World first: 'Storing lightning inside thunder'

Stylised explanation of how the chip works. 1. Photonic (light) data pulse (yellow) enters from the left. 2. A 'write pulse' (blue) enters from the right 3. The data and write pulses interact in the chip, producing an acoustic wave, storing the data and allowing for processing, retrieval and further transmission. 4. Another photonic read pulse (blue) enters the chip, accessing the acoustic data and transmitting the data as photonic information (yellow) to the right side of the microchip. 5. Light passes through the chip in two to three nanoseconds, depending on the length of the spiral on the chip. Information can be held on the chip for an extra 10 nanoseconds as acoustic data. Credit: Rhys Holland & Sebastian Zentilomo/University of Sydney Usage Restrictions: Used only for this story

  • World-first transfer of light to acoustic information on a chip
  • Acoustic buffer parks photonic information in a sound wave for later retrieval
  • Hybrid chips useful in telecommunications networks and cloud computing

Researchers at the University of Sydney have dramatically slowed digital information carried as light waves by transferring the data into sound waves in an integrated circuit, or microchip.

It is the first time this has been achieved.

Transferring information from the optical to acoustic domain and back again inside a chip is critical for the development of photonic integrated circuits: microchips that use light instead of electrons to manage data.

These chips are being developed for use in telecommunications, optical fibre networks and cloud computing data centres where traditional electronic devices are susceptible to electromagnetic interference, produce too much heat or use too much energy.

“The information in our chip in acoustic form travels at a velocity five orders of magnitude slower than in the optical domain,” said Dr Birgit Stiller, research fellow at the University of Sydney and supervisor of the project.

“It is like the difference between thunder and lightning,” she said.

This delay allows for the data to be briefly stored and managed inside the chip for processing, retrieval and further transmission as light waves.

Light is an excellent carrier of information and is useful for taking data over long distances between continents through fibre-optic cables.

But this speed advantage can become a nuisance when information is being processed in computers and telecommunication systems.

To help solve these problems, lead authors Moritz Merklein and Dr Stiller, both from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) have now demonstrated a memory for digital information that coherently transfers between light and sound waves on a photonic microchip.

The chip was fabricated at the Australian National University's Laser Physics Centre, also part of the CUDOS Centre of Excellence.

Their research is published on Monday in Nature Communications.

IMPROVED CONTROL

University of Sydney doctoral candidate Mr Merklein said: “Building an acoustic buffer inside a chip improves our ability to control information by several orders of magnitude.”

Dr Stiller said: “Our system is not limited to a narrow bandwidth. So unlike previous systems this allows us to store and retrieve information at multiple wavelengths simultaneously, vastly increasing the efficiency of the device.”

Fibre optics and the associated photonic information – data delivered by light – have huge advantages over electronic information: bandwidth is increased, data travels at the speed of light and there is no heat associated with electronic resistance. Photons, unlike electrons, are also immune to interference from electromagnetic radiation.

However, the advantages of light-speed data have their own in-built problem: you need to slow things down on a computer chip so that you can do something useful with the information.

In traditional microchips this is done using electronics. But as computers and telecommunication systems become bigger and faster, the associated heat is making some systems unmanageable. The use of photonic chips – bypassing electronics – is one solution to this problem being pursued by large companies such as IBM and Intel.

Mr Merklein said: “For this to become a commercial reality, photonic data on the chip needs to be slowed down so that they can be processed, routed, stored and accessed.”

CUDOS director, ARC Laureate Fellow and co-author, Professor Benjamin Eggleton, said: “This is an important step forward in the field of optical information processing as this concept fulfils all requirements for current and future generation optical communication systems.”

###

For media comment contact:

Professor Ben Eggleton +61 448 931 701 benjamin.eggleton@sydney.edu.au

Mr Moritz Merklein +61 2 9351 3604 moritz.merklein@sydney.edu.au

Dr Birgit Stiller +61 2 8627 5253 birgit.stiller@sydney.edu.au

The Centre for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) is an Australian Research Council Centre of Excellence, headquartered at the University of Sydney, and a research consortium between six Australian universities throughout NSW, the ACT and Victoria. The work is supported by Professor Eggleton's ARC Laureate Fellowship.

Media Contact

Marcus Strom EurekAlert!

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Memory Self-Test via Smartphone

… Can Identify Early Signs of Alzheimer’s disease. Dedicated memory tests on smartphones enable the detection of “mild cognitive impairment”, a condition that may indicate Alzheimer’s disease, with high accuracy….

The Sound of the Perfect Coating

Fraunhofer IWS Transfers Laser-based Sound Analysis of Surfaces into Industrial Practice with “LAwave”. Sound waves can reveal surface properties. Parameters such as surface or coating quality of components can be…

Customized silicon chips

…from Saxony for material characterization of printed electronics. How efficient are new materials? Does changing the properties lead to better conductivity? The Fraunhofer Institute for Photonic Microsystems IPMS develops and…

Partners & Sponsors