Wireless home automation systems reveal more than you would think about user behaviour

This is the conclusion reached by IT security expert Christoph Sorge and his research team at Saarland University. Even data transmitted from encrypted systems can provide information useful to potential burglars. Professor Sorge, who holds the juris Professorship in Legal Informatics at Saarland University, and his research group are currently studying ways to make home automation systems more secure.

Frederik Möllers from Sorge’s team will be presenting the results at the ACM Conference on Security and Privacy in Wireless and Mobile Networks in Oxford on 25 July.

Regulating heating systems to save energy, adjusting lighting levels based on the time of day, watering house plants automatically, and raising or lowering blinds at the required times – the benefits of today’s smart home automation systems are numerous and they are becoming increasingly popular with homeowners.

However, studies by the research group led by Professor Christoph Sorge have shown that these wireless systems can also pose a security risk. ‘Many of the systems do not provide adequate security against unwanted third-party access and therefore threaten the privacy of the inhabitants,’ says Sorge, an expert for IT security, data protection and encryption technology at Saarland University. Sorge and his team have examined how susceptible the systems are to attack.

For the purposes of their study, the researchers took on the role of a malicious attacker. ‘Using a simple mini-PC no bigger in size than a packet of cigarettes we eavesdropped on the wireless home automation systems (HASs) of two volunteers and were thus able to determine just how much information a conventional wireless HAS reveals about its user,’ explains Sorge.

No other information about the users was available to the research group. The result: ‘Non-encrypted systems provide large quantities of data to anyone determined enough to access the data, and the attacker requires no prior knowledge about the system, nor about the user being spied on,’ says Professor Sorge.

‘The data acquired by the attacker can be analysed to extract system commands and status messages, items which reveal a lot about the inhabitants’ behaviour and habits. We were able to determine absence times and to identify home ventilation and heating patterns,’ explains the expert in legal informatics.

The analysis enabled the research group to build up profiles of the inhabitants. Even systems that use encryption technology can supply information to third parties: ‘The results indicate that even when encrypted communication is used, the number of messages exchanged is enough to provide information on absence times,’ says Sorge. Potential attacks can be directed against the functionality of the system or the privacy of the inhabitants. ‘An attacker with malicious intent could use this sort of information to plan a burglary,’ says Sorge.

‘A great deal still needs to be done to make wireless home automation systems secure. Improved data encryption and concealment technologies would be an important step towards protecting the privacy of HAS users,’ explains Professor Sorge. He and his group are currently working on developing technology of this type in collaboration with the University of Paderborn as part of a research project funded by the Federal Ministry of Economics and Energy.

The research work into home automation systems began with a Master’s degree thesis by Andreas Hellmann, who was supervised by Professor Sorge while still at the University of Paderborn. With his research group now based at Saarland University, Professor Sorge is currently continuing research in this area with his research assistant Frederik Möllers, who will be presenting the results of their recent study in Oxford on 25 July.

Background: Christoph Sorge is an expert for IT security, data privacy, secure communications, encryption technologies, electronic signatures, and the use of IT systems in the legal sector. He holds a professorship endowed by juris GmbH at the Institute for Legal Informatics at Saarland University where he and his team teach and conduct research work at the interface of technology and law. Prior to taking up his position in Saarbrücken, Sorge held a Junior Professorship in Network Security at the University of Paderborn.

Contact: Professor Christoph Sorge:
Phone: +49 (0)681 302-5122 (Office: -5120), E-mail: christoph.sorge@uni-saarland.de

German Version of the press release: https://www.idw-online.de/de/news597128

A press photograph is available at http://www.uni-saarland.de/pressefotos and can be used at no charge. Please read and comply with the conditions of use.

Note for radio journalists: Studio-quality telephone interviews can be conducted with researchers at Saarland University using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-2601 or -64091).

Media Contact

Claudia Ehrlich Universität des Saarlandes

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors