Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Who Can Hijack Your Smart Meter? Weak Security Threatens Energy Grid

13.05.2015

Recent findings by two security researchers, Philipp Jovanovic of the University of Passau (Germany) and Samuel Neves of the University of Coimbra (Portugal), have exposed major flaws in a widely deployed smart grid system. As it turns out, the Open Smart Grid Protocol (OSGP), an essential pillar of the energy distribution technology, does not deliver the security required for critical infrastructures, such as smart grids, that potentially connect meters in millions of homes.

OSGP was originally developed by the Energy Service Network Association (ESNA) and became a standard of the European Telecommunications Standards Institute (ETSI) in 2012. It is currently deployed in over four million devices worldwide, according to members of OSGP Alliance.

In their paper Practical Cryptanalysis of the Open Smart Grid Protocol, presented at the annual workshop on Fast Software Encryption (FSE) in March 2015, Jovanovic and Neves identified multiple attack vectors which would allow an adversary to recover secret keys used in the underlying OSGP protocol.

Using these, the attacker could decrypt the protected communication within the smart grid and might even take over control by manipulating exchanged messages. The attacks have varying levels of applicability and are based on different assumptions about the capabilities of an attacker. The most practical of the attacks merely requires that the adversary intercepts and slightly modifies encrypted messages to recover the secret key.

Attackers would not need physical access to the smart meters themselves – remote communication is sufficient. These attacks make use of the fact that each message is checked for authenticity. The researchers showed that there is a dependency between the successful authentication of manipulated messages and the values of individual bits of the secret key. Exploiting this, as little as 168 manipulated encrypted messages are sufficient on average to fully expose the secret key.

“Basically, all our FSE’15 reviews pointed out how simple these attacks are on a conceptual level. We were quite a bit surprised that our paper got accepted in the end,” remarked Philipp Jovanovic, one of the co-authors of the paper. The success of the attacks is based on the weaknesses of the deployed cryptographic primitives and the way they are combined in OSGP.

The RC4 stream cipher is used for encryption and the OMA Digest for message authentication. It has been already known for a long time that RC4 has security issues and cryptographers have been advising for years against its usage. Due to the dwindling trust in its security, RC4 was recently prohibited for usage in TLS, the protocol that secures communication on the Internet (see RFC7465 for more information). However, the far more serious problem in OSGP is the OMA Digest.

This is a homespun primitive which has been found to be extremely weak and cannot be assumed to provide any authenticity whatsoever, as explained in the paper. This function is also the main reason that the presented attacks are so exceptionally simple. Finally, the fact that the RC4 encryption keys are derived from the secret keys used in the OMA Digest leads to the complete compromise of OSGP.

“These attacks show once more that cryptographic primitives must undergo a thorough analysis by qualified scientists before deployment,” said Professor Ilia Polian, who supervises Philipp Jovanovic. Professor Polian holds the Chair of Computer Engineering and is the Dean of the Faculty of Computer Science and Mathematics. “This is not only a technological issue,” added Professor Gerrit Hornung (Chair of Public Law, IT Law and Legal Informatics and speaker of the University’s Institute of IT Security and Security Law).

“Particularly in critical infrastructures like energy supply, the state is responsible for the prevention of security vulnerabilities. This is why we are discussing an EU Directive which aims at improving IT security in such infrastructures and obliges the providers to report incidents.” Hornung also believes that the described attack endorses the Institute’s interdisciplinary research approach, which looks at IT security from both the technical and the legal point of view: “There is a clear need for integrated work in this area.”

The researchers pointed out that the published attacks have been developed at the conceptual protocol level and have not been carried out in an actual smart grid installation. Demonstrating the attack would require access to proprietary hardware and substantial interfacing efforts. The uncovered weaknesses were communicated to OSGP Alliance members in November 2014. Although it is unlikely that these attacks have already been launched in practice, the warning signs are obvious.

As Klaus Kursawe and Christiane Peters from the European Network for Cyber Security (ENCS) recently wrote in “Structural Weaknesses in the Open Smart Grid Protocol” an overview article on OSGP’s security which was released independently of the work of Philipp Jovanovic and Samuel Neves: “...like cracks in a dam — a last warning sign that something needs to be fixed before the real damage has been done.”

links and references

http://www.osgp.org/ - Website OSGP
https://eprint.iacr.org/2015/428 - original paper by Jovanovic/Neves
https://tools.ietf.org/html/rfc7465 - further information on RC4
https://www.encs.eu/ - Website ENCS
https://eprint.iacr.org/2015/088 - original article by Kursawe/Peter

Katrina Jordan | idw - Informationsdienst Wissenschaft

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>