Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wearable depth-sensing projection system makes any surface capable of multitouch interaction

18.10.2011
Researchers from Microsoft Research and Carnegie Mellon create OmniTouch technology

OmniTouch, a wearable projection system developed by researchers at Microsoft Research and Carnegie Mellon University, enables users to turn pads of paper, walls or even their own hands, arms and legs into graphical, interactive surfaces.

OmniTouch employs a depth-sensing camera, similar to the Microsoft Kinect, to track the user's fingers on everyday surfaces. This allows users to control interactive applications by tapping or dragging their fingers, much as they would with touchscreens found on smartphones or tablet computers. The projector can superimpose keyboards, keypads and other controls onto any surface, automatically adjusting for the surface's shape and orientation to minimize distortion of the projected images.

"It's conceivable that anything you can do on today's mobile devices, you will be able to do on your hand using OmniTouch," said Chris Harrison, a Ph.D. student in Carnegie Mellon's Human-Computer Interaction Institute. The palm of the hand could be used as a phone keypad, or as a tablet for jotting down brief notes. Maps projected onto a wall could be panned and zoomed with the same finger motions that work with a conventional multitouch screen.

Harrison was an intern at Microsoft Research when he developed OmniTouch in collaboration with Microsoft Research's Hrvoje Benko and Andrew D. Wilson. Harrison will describe the technology on Wednesday (Oct. 19) at the Association for Computing Machinery's Symposium on User Interface Software and Technology (UIST) in Santa Barbara, Calif.

A video demonstrating OmniTouch and additional downloadable media are available at: http://www.chrisharrison.net/index.php/Research/OmniTouch

The OmniTouch device includes a short-range depth camera and laser pico-projector and is mounted on a user's shoulder. But Harrison said the device ultimately could be the size of a deck of cards, or even a matchbox, so that it could fit in a pocket, be easily wearable, or be integrated into future handheld devices.

"With OmniTouch, we wanted to capitalize on the tremendous surface area the real world provides," said Benko, a researcher in Microsoft Research's Adaptive Systems and Interaction group. "We see this work as an evolutionary step in a larger effort at Microsoft Research to investigate the unconventional use of touch and gesture in devices to extend our vision of ubiquitous computing even further. Being able to collaborate openly with academics and researchers like Chris on such work is critical to our organization's ability to do great research — and to advancing the state of the art of computer user interfaces in general."

Harrison previously worked with Microsoft Research to develop Skinput, a technology that used bioacoustic sensors to detect finger taps on a person's hands or forearm. Skinput thus enabled users to control smartphones or other compact computing devices.

The optical sensing used in OmniTouch, by contrast, allows a wide range of interactions, similar to the capabilities of a computer mouse or touchscreen. It can track three-dimensional motion on the hand or other commonplace surfaces, and can sense whether fingers are "clicked" or hovering. What's more, OmniTouch does not require calibration — users can simply wear the device and immediately use its features. No instrumentation of the environment is needed; only the wearable device is needed.

The Human-Computer Interaction Institute is part of Carnegie Mellon's acclaimed School of Computer Science. Follow the school on Twitter @SCSatCMU.

About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of a $1 billion fundraising campaign, titled "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Information Technology:

nachricht Quantum computers by AQT and University of Innsbruck leverage Cirq for quantum algorithm development
16.09.2019 | Universität Innsbruck

nachricht Artificial Intelligence speeds up photodynamics simulations
12.09.2019 | University of Vienna

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Stroke patients relearning how to walk with peculiar shoe

18.09.2019 | Innovative Products

Statistical inference to mimic the operating manner of highly-experienced crystallographer

18.09.2019 | Physics and Astronomy

Scientists' design discovery doubles conductivity of indium oxide transparent coatings

18.09.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>