Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weakness is good...when controlling light

01.11.2016

Study reports how new weak control laser beam could boost computer chips

It's a paradox that has long vexed researchers in the field of optics.


The image shows a weak control beam (narrow red line, far right) and a more intense laser signal (larger red line, far left) within an asymmetrical metawaveguide (purple box). Credit: University at Buffalo.

Credit: University at Buffalo

To control a light source, another light source that uses as much energy -- if not more -- is often required. The setup works, but it's not efficient.

A new study reports that researchers have demonstrated a way to control light with light using one third -- in some cases, even less -- of the energy typically required. The advancement, coupled with other developments, could ultimately lead to more powerful, energy-efficient computer chips and other optics-based technologies.

"Typically, symmetry connotes harmony and beauty. But not in this case. We've developed technology -- an asymmetric metawaveguide -- that enables a weak control laser beam to manipulate a much more intense laser signal," says Liang Feng, PhD, assistant professor in the Department of Electrical Engineering at the University at Buffalo's School of Engineering and Applied Sciences, and the study's lead author.

The study -- "Metawaveguide for Asymmetric Interferometric Light-Light Switching" -- was published today (Oct. 31, 2016) in the journal Physical Review Letters. It was co-authored by researchers at California Institute of Technology and the City University of New York.

The study reports that the metawaveguide -- a tiny rectangular box made of silicon, the semiconducting material for computer chips -- creates asymmetric reflections of the two beams of light, which enables the weaker beam to control the other beam.

###

The research was supported by grants from the U.S. Army Research Office, the National Science Foundation and Boeing.

Media Contact

Cory Nealon
cmnealon@buffalo.edu
716-645-4614

 @UBNewsSource

http://www.buffalo.edu 

Cory Nealon | EurekAlert!

More articles from Information Technology:

nachricht Drones shown to make traffic crash site assessments safer, faster and more accurate
17.01.2019 | Purdue University

nachricht Next generation photonic memory devices are light-written, ultrafast and energy efficient
15.01.2019 | Eindhoven University of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>