Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wayne State University researcher’s technique helps robotic vehicles find their way, help humans

15.05.2013
A Wayne State University researcher understands that the three most important things about real estate also apply to small ground robotic vehicles: location, location, location.

In a paper recently published in the journal IEEE Transactions on Parallel and Distributed Systems, Weisong Shi, Ph.D., associate professor of computer science in the College of Engineering, describes his development of a technique called LOBOT that provides accurate, real-time, 3-D positions in both indoor and outdoor environments. The project was supported in part by the Wayne State Career Development Chair award, which gives Shi an opportunity to explore other areas after receiving tenure at WSU.

Scientists believe small ground robotic vehicles have great potential for use in situations that are either uncomfortable or too tedious for humans. For example, a robot may become part of industrial operations, assist senior citizens or serve as a tour guide for an exhibition center. Keeping a robot as small as possible enables it to move through narrow passageways, such as tunnels.

To complete such missions, a robotic vehicle often must obtain accurate localization in real time. But because frequent calibration or management of external facilities is difficult or impossible, a completely integrated self-positioning system is ideal. In addition, that system should work indoors or outdoors without human calibration or management and cost as little as possible.

In the paper titled “LOBOT: Low-Cost, Self-Contained Localization of Small-Sized Ground Robotic Vehicles,” Shi and lead author Guoxing Zhan, one of his former graduate students, describe their technique, which combines a GPS receiver, local relative positioning based on a 3-D accelerometer, a magnetic field sensor and several motor rotation sensors.

The researchers noted that IEEE Transactions, the leading journal in the field, prominently featured their paper in its April 2013 issue. They are proud that their work was in progress before President Barack Obama’s June 2011 announcement of the National Robotics Initiative, which seeks to accelerate the development and use of robots in the United States that work beside, or cooperatively with, people.

Shi’s technique combines elements of common localization schemes for ground robotic vehicles, noting that each of those schemes has limitations. One scheme, using GPS alone, requires a lot of power. Another, radio-based positioning, requires proper calibration, a friendly environment and a set of external devices to generate or receive radio signals.

A third scheme, the use of vision techniques, relies heavily on recognition of objects or shapes and often has restricted spatial and visual requirements. Additionally, those objects and shapes must be captured and loaded into a computer which, like GPS, requires a lot of power.

A fourth scheme, inertial sensors, is part of the LOBOT design. Inertial sensors often are used to detect movement, but unlike radio- or vision-based techniques, operate independently of external environmental features and need no external reference. However, previous methods of maintaining their accuracy have resulted in high cost and calibration difficulty.

LOBOT uses a hybrid approach that localizes robotic vehicles with infrequent GPS use, a 3-D version of the accelerometer used in other inertial sensor systems and several motor rotation sensors — all installed on the robotic vehicle. All of the components are commercially available, with some costing as little as $20.

“Our goal has been to solve a problem by building a robot that leverages a number of existing technologies that can be used to address the problem of location, which is the key to many possible applications” Shi said. “Because of the increasing number of things robots will be needed to do in the next five to 10 years, it is very important to develop a cheaper, low-powered approach that can address that problem as accurately as possible.”

Wayne State University is one of the nation’s pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu
http://www.wayne.edu

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>