Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unveiling the behaviour of hydrogen molecules

06.05.2011
IHPC’s William Yim from Materials Science and Engineering (MSE) was part of a research team that has made an impactful discovery.

Dr William Yim had the opportunity to collaborate with Toshiaki Iitaka from Riken Advanced Science Institute and Prof John Tse from Canada’s University of Saskatchewan last year.


The team of researchers discovered the physical basis to explain the newly discovered vibration behavior of molecular hydrogen, including ‘silane’ - hydrogen bound to silicon, under high pressure.

The two-month project resulted in a paper, ‘Pressure-induced intermolecular interactions in crystalline silane-hydrogen’, that was published in Physical Review Letters 105.

The cross-disciplinary team was like a dream team, made possible by the mutual introductions given by Prof John Tse and Dr Wu Ping, IHPC’s Director of Material Science and Engineering Department.

“Prof. John Tse’s expertise is on experimental and computational research on materials science and he is famous in high pressure research field” said William. “Dr. Toshiaski Iitaka is a permanent staff member at Riken working on solid state research and program development for linear scaling computational method.”

As William himself has a track record on ab initio vibrational frequency calculations applying to surface science, it was a good match of expertise.

His motto is “Be Prepared”, so the challenge of taking on the project was a welcome one.

“I like to learn new skills, and I made sure I learnt all the necessary computational techniques before this project. Good preparation and speed are the key factors in benefitting from such a good opportunity.”

It was a classic collaboration case study, in which everyone played an important role in making the breakthrough.

“When Prof. Tse mentioned an interesting problem of H2 vibron softening, we were well prepared to puzzle out the scientific question” William said.

William contributed the ‘Donor-acceptor interaction in compression regime’, which is a brand new idea.

The team performed molecular dynamic simulations to study the interactions between hydrogen and silane molecules, which gave a better fundamental understanding for the materials under extreme conditions.

The results provided a good basis to potentially develop a hydrogen economy.

William said “the knowledge of physical interaction in compressed regimes, as indicated by vibrational spectroscopy and chemical bonding, will be very helpful for further engineering the mixing process and hence the H2 transport capability.”

The project is another feather in the cap for IHPC.

Dr Toshiaki Itaka, from Riken’s Computational Astrophysics Laboratory commented: “It was an exciting experience that I could work with William and IHPC for the study of SiH4 under pressure. As a physicist, I learned a lot from the chemist's viewpoint of William.”

“I also noted that IHPC has strength not only in academic research but also in its application to important problems in real world. This is what Riken is aiming at, and would like to learn from IHPC.”

William too had an enriching experience working closely with the other researchers, commenting “the most important skill I’ve learnt is to understand how to translate research work into an impactful and engaging story. It is an art to turn lots of boring numbers into an interesting story so that people can understand the significance of the discovery.”

Joanne Tan | Research asia research news
Further information:
http://www.ihpc.a-star.edu.sg/
http://www.researchsea.com

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>