Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Deep Learning Infrastructure - DFKI receives first NVIDIA DGX-2 supercomputer in Europe

11.10.2018

The German Research Center for Artificial Intelligence (DFKI) is the first institution in Europe to receive an NVIDIA DGX-2, which is considered to be the world's most powerful AI supercomputer. Jensen Huang, founder and CEO of NVIDIA, presented the new AI system in his keynote speech at the GPU Technology Conference Europe (GTC) in Munich yesterday and referred to the outstanding work of DFKI in the field of satellite image analysis.

Prof. Dr. Andreas Dengel, head of the research area Smart Data & Knowledge Services at DFKI in Kaiserslautern and coordinator of the Deep Learning Competence Centre, is pleased about the growth in the server room:


Intelligent satellite image analysis by DFKI supports rescuers in disaster-response scenarios like flooding.

Sentinel


Andreas Dengel (l.) and Jensen Huang (r.) at the GTC Europe 2018

NVIDIA

"With the extension of our Machine Learning computer centre by a DGX-2, we are consolidating the position of DFKI as No. 1 in the application-oriented use of Deep Learning for industrial use and creating an infrastructure for research in the field of deep learning that is unique in Europe".

One of the outstanding research projects to be further deepened with the new hardware is the analysis of satellite images for the recognition and recording of the effects of natural disasters, from which emergency and rescue forces are supported with time-critical information.

A current key topic for the development of learning and autonomous systems (and another subject of DFKI research) is the decoding of the processing paths of deep neural networks.

Novel DFKI procedures are in the process of shedding light for the first time on the processes of the "black box" of deep learning and help to make their decision-making processes more comprehensible.
In addition, the new computing possibilities are intended to open up further promising potentials.

"The most powerful AI system in the world for the most complex AI challenges".

NVIDIA describes the DGX-2 as the most powerful AI system in the world designed for the most complex AI challenges, with 2 petaFLOPS of performance delivered in a single node. The supercomputer integrates 16 NVIDIA Tesla V100 Tensor Core GPUs connected via NVIDIA NVSwitch - an AI network fabric that delivers 2.5TB per second of throughput.

Its revolutionary architecture enables the acceleration of new AI model types that could not previously be trained. Thanks to DGX-2, the complexity and size of neural network models are no longer limited by the boundaries of conventional architectures. More...

The expansion of the DFKI's machine learning infrastructure is being funded by the state of Rhineland-Palatinate within the framework of a joint priority for the expansion of deep learning research in Rhineland-Pfalz.

Press contact:

Christian Heyer
Head of Corporate Communications
DFKI Kaiserslautern
Phone: +49 631 20575-1710
E-mail: Christian.Heyer@dfki.de

Weitere Informationen:

https://www.dfki.de/web/presse/pressemitteilung/2018/DGX-2_en Press release at DFKI.de
https://blogs.nvidia.com/blog/2018/10/10/dfki-dgx-2-supercomputer/ NVIDIA blog

Christian Heyer DFKI Kaiserslautern | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Intelligent Deletion of Superfluous Digital Files
21.02.2020 | Otto-Friedrich-Universität Bamberg

nachricht High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"
19.02.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>