Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking gunfire with a smartphone

26.04.2013
You are walking down the street with a friend. A shot is fired. The two of you duck behind the nearest cover and you pull out your smartphone. A map of the neighborhood pops up on its screen with a large red arrow pointing in the direction the shot came from.

A team of computer engineers from Vanderbilt University’s Institute of Software Integrated Systems has made such a scenario possible by developing an inexpensive hardware module and related software that can transform an Android smartphone into a simple shooter location system.

They described the new system’s capabilities this month at the 12th Association for Computing Machinery/Institute of Electrical and Electronics Engineers Conference on Information Processing in Sensor Networks in Philadelphia.

For the last decade, the Department of Defense has spent millions of dollars to develop sophisticated sniper location systems that are installed in military vehicles and require dedicated sensor arrays. Most of these take advantage of the fact that all but the lowest powered firearms produce unique sonic signatures when they are fired. First, there is the muzzle blast – an expanding balloon of sound that spreads out from the muzzle each time the rifle is fired. Second, bullets travel at supersonic velocities so they produce distinctive shockwaves as they travel. As a result, a system that combines an array of sensitive microphones, a precise clock and an off-the-shelf microprocessor can detect these signatures and use them to pinpoint the location from which a shot is fired with remarkable accuracy.

Six years ago, the Vanderbilt researchers, headed by Associate Professor of Electrical and Computer Science Akos Ledeczi developed a system that turns the soldiers’ combat helmets into mobile “smart nodes” in a wireless network that can rapidly identify the location of enemy snipers with a surprising degree of accuracy.

In the past few years, the ISIS team has adapted their system so it will work with the increasingly popular smartphone.

Like the military version, the smartphone system needs several nodes in order to pinpoint a shooter’s location. As a result, it is best suited for security teams or similar groups. “It would be very valuable for dignitary protection,” said Kenneth Pence, a retired SWAT officer and associate professor of the practice of engineering management who participated in the project. “I’d also love to see a version developed for police squad cars.”

In addition to the smartphone, the system consists of an external sensor module about the size of a deck of cards that contains the microphones and the processing capability required to detect the acoustic signature of gunshots, log their time and send that information to the smartphone by a Bluetooth connection. The smartphones then transmit that information to the other modules, allowing them to obtain the origin of the gunshot by triangulation.

The researchers have developed two versions. One uses a single microphone per module. It uses both the muzzle blast and shockwave to determine the shooter location. It requires six modules to obtain accurate locations. The second version uses a slightly larger module with four microphones and relies solely on the shockwave. It requires only two modules to accurately detect the direction a shot comes from, however, it only provides a rough estimate of the range.

The research was supported by Defense Advance Research Project Agency grant D11PC20026.
Contact:
David Salisbury, (615) 322-NEWS
david.salisbury@vanderbilt.edu

David Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

Further reports about: Defense Electrical Tracking Vanderbilt sensor arrays shooter location system

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>