Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Towards data storage at the single molecule level

07.12.2017

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit.


The tip of the STM (yellow) assumes the role of a hard drive’s reading and writing head for the molecule attached to the copper nitride surface (black).

Figure/Copyright: Manuel Gruber


The three different states of the molecule correspond to a trinary code for encrypting information: in a highly magnetic state (l), in a low magnetic state (m) and turned by 45 degrees (r).

Figure/Copyright: Manuel Gruber

Similar to normal hard drives, these special molecules can save information via their magnetic state. To do so, they have to be placed on surfaces, which is challenging without damaging their ability to save the information.

A research team from Kiel University has now not only managed to successfully place a new class of spin-crossover molecules onto a surface, but they have also used interactions which were previously regarded as obstructive to improve the molecule’s storage capacity.

The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold, and data carriers could be made significantly smaller. The scientists have published their findings in the scientific journal Nano Letters.

Is a switch on or off? Is a statement true or false? Is an answer yes or no? The differentiation between two possibilities is the smallest piece of information that a computer can save. Bits (a word comprised of ‘binary’ and ‘digit’), as the smallest electronic storage unit, are the basic building blocks for all information stored on our hard drives.

They are presented as a sequence of two different symbols like 0 and 1, the so-called binary code. Over the past few years, storage media have become ever smaller while their capacity to store information has increased. One Bit on a hard drive now only requires a space of around 10 by 10 nanometres. This is still too big for miniaturising components, however.

“The technology that is currently being used to store data on hard drives now reaches the fundamental limits of quantum mechanics due to the size of the Bit. It cannot get any smaller, from today’s perspective,” says Torben Jasper-Tönnies, doctoral researcher in Professor Richard Berndt’s working group at Kiel University’s Institute of Experimental and Applied Physics.

He and his colleagues used a single molecule, which could be employed to encode a Bit, to demonstrate a principle which might just enable even smaller hard drives with more storage in the future. “Our molecule is just one square nanometre in size. Even with this alone, a bit could be encoded in an area hundred times smaller than what is nowadays required,” says his colleague, Dr Manuel Gruber. This would be another step towards shifting the limits of quantum physics in storage technology.

When Bits become Trits

The molecule which the interdisciplinary research team from the Kiel Collaborative Research Centre (CRC) 677 “Function by Switching” uses can not only assume two different magnetic states, but when attached to a special surface, it can also change its connection to the surface. It can then be switched between a high and low magnetic state, and turned by 45 degrees. “When transferred onto storage technology, we would be able to depict information on three states - those being 0, 1 and 2,” explained Jasper-Tönnies. “As a storage unit, we wouldn’t have a Bit, we would have a Trit. Binary code would become trinary code.”

The challenge for the researchers from Chemistry and Physics was in finding a suitable molecule and a suitable surface, as well as using the correct method to connect the two together in a way that would still allow them to work. “Magnetic molecules, so-called spin-crossover molecules, are very sensitive and easily damaged. We needed to find a way to firmly attach the molecule to the surface without affecting its switching ability,” explained Gruber.

Perfect combination of molecule and surface

Their experiments finally paid off: Chemists from Professor Felix Tuczek’s working group at the Institute of Inorganic Chemistry synthesized a magnetic molecule of a special class (a so-called Fe(III) spin crossover molecule). Physicists Jasper-Tönnies, Gruber and Sujoy Karan were able to deposit this molecule on a copper nitride surface by means of evaporation.

Using electricity, it can be switched between different spin states, and also between two different directions (in the so-called low-spin state). The fine tip of a scanning tunnelling microscope (STM) acts as a hard drive’s reading and writing head in their experiments. This piece of equipment allows the molecule to not only be “written” as a storage medium, but also to be “read” using electricity.

Before these molecules can be used as a data storage on an industrial level further investigation must be carried on. Indeed, the proof of principle is demonstrated using a rather voluminous setup (STM) and further work is required to integrate such a molecular memory on a small chip.

This work was completed in the Kiel Collaborative Research Centre (CRC) 677 “Function by Switching”. Around 100 scientists from Chemistry, Physics, Materials Science, Pharmacy and Medicine are working at the CRC on a cross-disciplinary basis to develop switchable molecular machines. The CRC has been financed by the German Research Foundation (DFG) since 2007.

Original publication:
Robust and Selective Switching of an Fe III Spin-Crossover Compound on Cu2N/Cu(100) with Memristance Behavior. Torben Jasper-Toennies, Manuel Gruber, Sujoy Karan, Hanne Jacob, Felix Tuczek, and Richard Berndt, Nano Letters 2017 17 (11), 6613-6619, DOI: 10.1021/acs.nanolett.7b02481
http://pubs.acs.org/doi/abs/10.1021/acs.nanolett.7b02481

Other publications on this topic:
Deposition of a Cationic FeIII Spin-Crossover Complex on Au(111): Impact of the Counter Ion. Torben Jasper-Toennies, Manuel Gruber, Sujoy Karan, Hanne Jacob, Felix Tuczek, and Richard Berndt, J. Phys. Chem. Lett., 2017, 8 (7), 1569–1573, DOI: 10.1021/acs.jpclett.7b00457 http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.7b00457

Photos are available to download:

http://www.uni-kiel.de/download/pm/2017/2017-387-1.png
The images from the scanning tunnelling microscope (STM) show the three different states of the molecule, which correspond to a trinary code for encrypting information: in a highly magnetic state (left), in a low magnetic state with atoms that have moved closer together (middle) and in an equally low magnetic state but turned by 45 degrees (right).
Figure/Copyright: Manuel Gruber

http://www.uni-kiel.de/download/pm/2017/2017-387-2.png
The Fe(III) spin crossover molecule used in the experiment under the STM, with a model of its structure placed on top.
Figure/Copyright: Manuel Gruber

http://www.uni-kiel.de/download/pm/2017/2017-387-3.png
The tip of the STM (yellow) assumes the role of a hard drive’s reading and writing head for the molecule attached to the copper nitride surface (black).
Figure/Copyright: Manuel Gruber

http://www.uni-kiel.de/download/pm/2017/2017-387-4.jpg
Dr Manuel Gruber (left) and Torben Jasper-Tönnies from the Institute of Experimental and Applied Physics use an STM to switch and read a magnetic molecule on a copper nitride surface.
Photo/Copyright: Julia Siekmann, Kiel University

Contact:
Dr rer. nat. Manuel Gruber
Institute of Experimental and Applied Physics
Tel.: +49 431 880-5091
E-mail: gruber@physik.uni-kiel.de

Torben Jasper-Tönnies
Institute of Experimental and Applied Physics
Tel.: +49 431 880-3834
E-mail: jasper-toennies@physik.uni-kiel.de

The Collaborative Research Centre (CRC) 677 “Function by Switching” at Kiel University, has around 100 scientists from Chemistry, Physics, Materials Science, Pharmacy and Medicine working on a cross-disciplinary basis to develop switchable molecular machines which can be controlled by light, for example. The CRC has been financed by the German Research Foundation (DFG) since 2007. More information: http://www.sfb677.uni-kiel.de

The CRC 677 is part of the research focus Kiel Nano, Surface and Interface Science (KiNSIS) at Kiel University: http://www.kinsis.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Further information:
http://www.uni-kiel.de

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>