Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To tune up your quantum computer, better call an AI mechanic

01.04.2020

New paradigm for "auto-tuning" quantum bits could overcome major engineering hurdle.

A high-end race car engine needs all its components tuned and working together precisely to deliver top-quality performance. The same can be said about the processor inside a quantum computer, whose delicate bits must be adjusted in just the right way before it can perform a calculation.


This artist's conception shows how the research team used artificial intelligence (AI) and other computational techniques to tune a quantum dot device for use as a qubit. The dot's electrons are corralled by electrical gates, whose adjustable voltages raise and lower the "peaks" and "valleys" in the large circles. As the gates push the electrons around, sensitive measurement of the moving electrons creates telltale lines in the black and white images, which the AI uses to judge the state of the dot and then make successive adjustments to the gate voltages. Eventually the AI converts a single dot (leftmost large circle) to a double dot (rightmost), a process that takes tedious hours for a human operator.

Credit: B. Hayes / NIST

Who's the right mechanic for this quantum tuneup job?

According to a team that includes scientists at the National Institute of Standards and Technology (NIST), it's an artificial intelligence, that's who.

The team's paper in the journal Physical Review Applied outlines a way to teach an AI to make an interconnected set of adjustments to tiny quantum dots, which are among the many promising devices for creating the quantum bits, or "qubits," that would form the switches in a quantum computer's processor.

Precisely tweaking the dots is crucial for transforming them into properly functioning qubits, and until now the job had to be done painstakingly by human operators, requiring hours of work to create even a small handful of qubits for a single calculation.

A practical quantum computer with many interacting qubits would require far more dots -- and adjustments -- than a human could manage, so the team's accomplishment might bring quantum dot-based processing closer from the realm of theory to engineered reality.

"Quantum computer theorists imagine what they could do with hundreds or thousands of qubits, but the elephant in the room is that we can actually make only a handful of them work at a time," said Justyna Zwolak, a NIST mathematician. "Now we have a path forward to making this real."

A quantum dot typically contains electrons that are confined to a tight boxlike space in a semiconductor material. Forming the box's walls are several metallic electrodes (so-called gates) above the semiconductor surface that have electric voltage applied to them, influencing the quantum dot's position and number of electrons. Depending on their position relative to the dot, the gates control the electrons in different ways.

To make the dots do what you want -- act as one sort of qubit logic switch or another, for example -- the gate voltages must be tuned to just the right values. This tuning is done manually, by measuring currents flowing through the quantum dot system, then changing the gate voltages a bit, then checking the current again. And the more dots (and gates) you involve, the harder it is to tune them all simultaneously so that you get qubits that work together properly.

In short, this isn't a gig that any human mechanic would feel bad about losing to a machine.

"It's usually a job done by a graduate student," said graduate student Tom McJunkin of the University of Wisconsin-Madison's physics department and a co-author on the paper. "I could tune one dot in a few hours, and two might take a day of twiddling knobs. I could do four, but not if I need to go home and sleep. As this field grows, we can't spend weeks getting the system ready -- we need to take the human out of the picture."

Pictures, though, are just what McJunkin was used to looking at while tuning the dots: The data he worked with came in the form of visual images, which the team realized that AI is good at recognizing. AI algorithms called convolutional neural networks have become the go-to technique for automated image classification, as long as they are exposed to lots of examples of what they need to recognize. So the team's Sandesh Kalantre, under supervision from Jake Taylor at the Joint Quantum Institute, created a simulator that would generate thousands of images of quantum dot measurements they could feed to the AI as a training exercise.

"We simulate the qubit setup we want and run it overnight, and in the morning we have all the data we need to train the AI to tune the system automatically," Zwolak said. "And we designed it to be usable on any quantum dot-based system, not just our own."

The team started small, using a setup of two quantum dots, and they verified that within certain constraints their trained AI could auto-tune the system to the setup they desired. It wasn't perfect -- they identified several areas they need to work on to improve the approach's reliability -- and they can't use it to tune thousands of interconnected quantum dots as yet. But even at this early stage its practical power is undeniable, allowing a skilled researcher to spend valuable time elsewhere.

"It's a way to use machine learning to save labor, and -- eventually -- to do something that human beings aren't good at doing," Zwolak said. "We can all recognize a three-dimensional cat, and that's basically what a single dot with a few properly-tuned gates is. Lots of dots and gates are like a 10-dimensional cat. A human can't even see a 10D cat. But we can train an AI to recognize one."

Media Contact

Chad Boutin
boutin@nist.gov
301-975-4261

 @NIST

http://www.nist.gov 

Chad Boutin | EurekAlert!
Further information:
https://www.nist.gov/news-events/news/2020/03/tune-your-quantum-computer-better-call-ai-mechanic
http://dx.doi.org/10.1103/PhysRevApplied.13.034075

More articles from Information Technology:

nachricht Genetic code for stem cell heart repair detected
06.07.2020 | Universität Rostock

nachricht Spintronics: Faster data processing through ultrashort electric pulses
02.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

 
Latest News

Protective antibodies identified for rare, polio-like disease in children

06.07.2020 | Health and Medicine

How a mutation on the novel coronavirus has come to dominate the globe

06.07.2020 | Life Sciences

Order from noise: how randomness and collective dynamics define a stem cell

06.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>