Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tissue structure delays cancer development

20.12.2011
Computer model reveals that spatial structure delays tumour formation

Cancer growth normally follows a lengthy period of development. Over the course of time, genetic mutations often accumulate in cells, leading first to pre-cancerous conditions and ultimately to tumour growth.

Using a mathematical model, scientists at the Max Planck Institute for Dynamics and Self-Organization in Göttingen, University of Pennsylvania and University of California San Francisco, have now shown that spatial tissue structure, such as that found in the colon, slows down the accumulation of genetic mutations, thereby delaying the onset of cancer. Their model could help in the assessment of tissue biopsies and improve predictions of the progression of certain cancer types.

Many types of cancer develop unnoticed in the body over a long number of years before the disease erupts. The point of departure is provided by specific genetic mutations including point mutations, copy number alterations, loss of heterozygosity, and other structural rearrangements, that gradually accumulate in the cells, leading to the formation of pre-cancerous lesions.

If a certain number of mutations is reached in individual cells, the cells begin to proliferate unchecked. For some cancer types, the accumulation process can take up to 20 years. However, not everyone with pre-cancerous tissue will actually develop cancer; the formation of abnormal cells often has no medical consequences. To date, it is still unclear why tumours develop in some cases and not in others.

Using mathematical modelling, a research group headed by Erik Martens and Oskar Hallatschek of the Max Planck Institute for Dynamics and Self-Organization in Göttingen have studied how genetic mutations spread, the speed of the mutation accumulation process, and the impact of this process on the progression of pre-cancerous conditions. They have shown that the destiny of oncogenic or cancer-causing mutations depends in part on where they occur and how much competition they are exposed to from other, similar mutations. In an environment without any spatial structure, for example in the blood, genetic mutations can propagate and accumulate relatively fast. In tissue with clear spatial structure, such as that of the colon, however, it takes longer for cells to accumulate the number of mutations required for tumour formation.

The study was based on a theoretical model of evolution developed by the two Max Planck scientists. Many genetic mutations are detrimental to the mutated cells and therefore do not prosper. On the other hand, certain genetic alterations give their hosts a competitive advantage over other cells. This includes, for example, mutations that increase the rate of cell division. “That direct advantage enables cells with this type of mutation to proliferate and accumulate in the tissue; but in such cases, what is advantageous to the cell is harmful to the patient, as it may ultimately cause cancer”, explains Erik Martens.

The model used in this research was based on tissue like that of the intestinal wall, which contains many pockets or crypts, each containing isolated groups of cells that may accumulate and carry different mutations. If mutations arise only rarely, they may spread unhindered through the pre-cancerous tissue. However, if other mutations occur before the first one has spread throughout the tissue, the diverse mutation clones meet and compete with one another for survival. In such cases, there are many losers and few winners, and only certain mutations are successful in establishing themselves.

In principle, advantageous mutations cannot proliferate as quickly in spatially structured cell populations as in fully mixed or structureless populations. Consequently, the competition between mutations in spatially structured tissue is often very strong, and the mutation accumulation rate is lower than in non-structured populations. According to the study, this is why structured populations take longer to reach a critical number of mutations, thereby delaying the onset of cancer.

“Even though many types of cancer arise in body tissues with clear spatial structures, most earlier models of cancer progression neglected this aspect and were based on well-mixed cell populations”, explains Erik Martens. “However, it is important to integrate the structural aspect in order to better predict how pre-cancerous conditions progress. For instance, tissue with spatial structure accumulates fewer mutations over a given period than tissue with unstructured cells. It could therefore be that the number of mutations required to trigger certain types of cancer has been overestimated”. The researchers hope that their findings will help improve the interpretation of tissue biopsies and contribute to more realistic predictions of cancer progression.

Contact
Dr. Erik Martens
Max Planck Institute for Dynamics and Self-Organization, Göttingen
Phone: +49 551 517-6271
Email: erik.martens@ds.mpg.de
Dr. Oskar Hallatschek
Max Planck Institute for Dynamics and Self-Organization, Göttingen
Phone: +49 551 517-6670
Email: oskar.hallatschek@ds.mpg.de
Original publication
Erik A. Martens, Rumen Kostadinov, Carlo C. Maley and Oskar Hallatschek
Spatial structure increases the waiting time for cancer
New Journal of Physics 13, 115014 (2011); DOI: 10.1088/1367-2630/13/11/115014

Dr. Erik Martens | Max-Planck-Institute
Further information:
http://www.mpg.de/4735114/tissue_structure_tumour

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>