Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three components on one chip

06.12.2018

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is based on the utilization of single photons to carry and process quantum information.


Photonic circuit in which single photons are emitted, guided and split into two waveguide-arms.

University of Stuttgart/Mario Schwartz

Scientists of the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) were now able to integrate three necessary main components (single-photon source, beamsplitters and single-photon detectors) on a single chip and operate it on the single-photon level.

This experiment demonstrates the functionality of the basic components for a scalable system for photon-based quantum information processes. The results got published in Nano Letters.

In contrast to the widespread silicon technology, the experiment was implemented on a gallium arsenide (GaAs) platform, allowing the direct integration of nanometer-sized structures, called quantum dots (QDs), which can serve as efficient on-demand sources of single photons.

In addition, GaAs allows guiding these single photons to optical logic circuits and to special on-chip detectors made of superconducting nanowires. In the experiment, single photons emitted by an optically pumped quantum dot were guided inside a photonic waveguide and divided by an on-chip beamsplitter into two waveguide-arms, each equipped with a detector.

“One of the challenges so far in this type of fully on-chip experiment was the close proximity of the excitation laser to the on-chip detectors”, explains Mario Schwartz.

The PhD student from the Institute of Semiconductor Optics and Functional Interfaces (IHFG), University of Stuttgart, was working over the last years on the realization of a proof-of-principle experiment to show the feasibility of combining all main components on one single photonic chip.

The project was realized in close collaboration with the PhD student Ekkehart Schmidt from the KIT, who is an expert for the design and implementation of the on-chip detectors. “The detectors cannot distinguish photons coming from the laser and photons coming from the quantum dot, leading to undesirable detection events”, Schmidt further points out.

The scientists were able to significantly reduce the influence of the laser photons by implementing reflecting metal layers on the chip. This idea allowed the verification of the quantum nature of the QD emission by using only the on-chip components.

“The successful experiment is an important step forward and demonstrates the potential of fully integrated photonic circuits with all main components being implemented on a single chip. We foresee clear possibilities of increasing the device complexity in the near future” says Prof. Dr. Peter Michler, director of the IHFG, University of Stuttgart.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Peter Michler, Mario Schwartz, Florian Hornung, University of Stuttgart, Institute of Semiconductor Optics and Functional Interfaces (IHFG), Tel.:+49 (0)711/685-64660, p.michler@ihfg.uni-stuttgart.de

Originalpublikation:

Mario Schwartz, Ekkehart Schmidt, Ulrich Rengstl, Florian Hornung, Stefan Hepp, Simone L. Portalupi, Konstantin llin, Michael Jetter, Michael Siegel, and Peter Michler: Fully On-Chip Single-Photon Hanbury-Brown and Twiss Experiment on a Monolithic Semiconductor–Superconductor Platform, Nano Letters, 2018, 18 (11), pp 6892–6897

Weitere Informationen:

https://pubs.acs.org/doi/10.1021/acs.nanolett.8b02794

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht New quantum materials could take computing devices beyond the semiconductor era
04.12.2018 | University of California - Berkeley

nachricht A new way to see stress -- using supercomputers
03.12.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

Im Focus: A golden age for particle analysis

Process engineers at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a method which allows the size and shape of nanoparticles in dispersions to be determined considerably quicker than ever before. Based on gold nanorods, they demonstrated how length and diameter distributions can be measured accurately in just one step instead of the complicated series of electron microscopic images which have been needed up until now. Nanoparticles from precious metals are used, for example, as catalysts and contrast agents for diagnosing cancer. The results have been published in the renowned journal Nature Communications (doi: 10.1038/s41467-018-07366-9).

Even in the Middle Ages, gold particles were used to create vibrant red and blue colours, for example to illustrate biblical scenes in stained glass windows....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

Top-class programme at the ROS-Industrial Conference 2018

23.11.2018 | Event News

 
Latest News

Why Tehran Is Sinking Dangerously

06.12.2018 | Earth Sciences

Improving hydropower through long-range drought forecasts

06.12.2018 | Power and Electrical Engineering

A step closer to fusion energy

05.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>