Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

This AI birdwatcher lets you 'see' through the eyes of a machine

01.11.2019

New research aims to open the 'black box' of computer vision

It can take years of birdwatching experience to tell one species from the next. But using an artificial intelligence technique called deep learning, Duke University researchers have trained a computer to identify up to 200 species of birds from just a photo.


A Duke team trained a computer to identify up to 200 species of birds from just a photo. Given a photo of a mystery bird (top), the A.I. spits out heat maps showing which parts of the image are most similar to typical species features it has seen before.

Credit: Chaofan Chen, Duke University

The real innovation, however, is that the A.I. tool also shows its thinking, in a way that even someone who doesn't know a penguin from a puffin can understand.

The team trained their deep neural network -- algorithms based on the way the brain works -- by feeding it 11,788 photos of 200 bird species to learn from, ranging from swimming ducks to hovering hummingbirds.

The researchers never told the network "this is a beak" or "these are wing feathers." Given a photo of a mystery bird, the network is able to pick out important patterns in the image and hazard a guess by comparing those patterns to typical species traits it has seen before.

Along the way it spits out a series of heat maps that essentially say: "This isn't just any warbler. It's a hooded warbler, and here are the features -- like its masked head and yellow belly -- that give it away."

Duke computer science Ph.D. student Chaofan Chen and undergraduate Oscar Li led the research, along with other team members of the Prediction Analysis Lab directed by Duke professor Cynthia Rudin.

They found their neural network is able to identify the correct species up to 84% of the time -- on par with some of its best-performing counterparts, which don't reveal how they are able to tell, say, one sparrow from the next.

Rudin says their project is about more than naming birds. It's about visualizing what deep neural networks are really seeing when they look at an image.

Similar technology is used to tag people on social networking sites, spot suspected criminals in surveillance cameras, and train self-driving cars to detect things like traffic lights and pedestrians.

The problem, Rudin says, is that most deep learning approaches to computer vision are notoriously opaque. Unlike traditional software, deep learning software learns from the data without being explicitly programmed. As a result, exactly how these algorithms 'think' when they classify an image isn't always clear.

Rudin and her colleagues are trying to show that A.I. doesn't have to be that way. She and her lab are designing deep learning models that explain the reasoning behind their predictions, making it clear exactly why and how they came up with their answers. When such a model makes a mistake, its built-in transparency makes it possible to see why.

For their next project, Rudin and her team are using their algorithm to classify suspicious areas in medical images like mammograms. If it works, their system won't just help doctors detect lumps, calcifications and other symptoms that could be signs of breast cancer. It will also show which parts of the mammogram it's homing in on, revealing which specific features most resemble the cancerous lesions it has seen before in other patients.

In that way, Rudin says, their network is designed to mimic the way doctors make a diagnosis. "It's case-based reasoning," Rudin said. "We're hoping we can better explain to physicians or patients why their image was classified by the network as either malignant or benign."

###

The team is presenting a paper on their findings at the Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019) in Vancouver on December 12.

Other authors of this study include Daniel Tao and Alina Barnett of Duke and Jonathan Su at MIT Lincoln Laboratory.

CITATION: "This Looks Like That: Deep Learning for Interpretable Image Recognition," Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Jonathan Su and Cynthia Rudin. Electronic Proceedings of the Neural Information Processing Systems Conference. December 12, 2019.

Media Contact

Robin Ann Smith
ras10@duke.edu
919-681-8057

 @DukeU

http://www.duke.edu

Robin Ann Smith | EurekAlert!
Further information:
https://today.duke.edu/2019/10/ai-birdwatcher-lets-you-see-through-eyes-machine

More articles from Information Technology:

nachricht Novel approach improves graphene-based supercapacitors
03.08.2020 | University of Technology Sydney

nachricht Germany-wide rainfall measurements by utilizing the mobile network
03.08.2020 | Karlsruher Institut für Technologie (KIT)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

Im Focus: Manipulating non-magnetic atoms in a chromium halide enables tuning of magnetic properties

New approach creates synthetic layered magnets with unprecedented level of control over their magnetic properties

The magnetic properties of a chromium halide can be tuned by manipulating the non-magnetic atoms in the material, a team, led by Boston College researchers,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Identifying the blind spots of soil biodiversity

04.08.2020 | Life Sciences

Implantable transmitter provides wireless option for biomedical devices

04.08.2020 | Medical Engineering

Surface clean-up technology won't solve ocean plastic problem

04.08.2020 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>