Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019

Hiroshima University, National Institute of Information and Communications Technology, and Panasonic Corporation announced the successful development of a terahertz (THz) transceiver that can transmit or receive digital data at 80 gigabits per second (Gbit/s). The transceiver was implemented using silicon CMOS integrated circuit technology, which would have a great advantage for volume production. Details of the technology will be presented at the International Solid-State Circuits Conference (ISSCC) 2019 to be held from February 17 to February 21 in San Francisco, California [1].

The THz band is a new and vast frequency resource expected to be used for future ultrahigh-speed wireless communications. IEEE Standard 802.15.3d, published in October 2017, defines the use of the lower THz frequency range between 252 gigahertz (GHz) and 325 GHz (the "300-GHz band") as high-speed wireless communication channels.


Medical AI and doctors at earth stations could remotely conduct a zero-gravity operation aboard a space plane connected via terahertz wireless links.

Credit: ©HIROSHIMA UNIVERSITY, NICT, PANASONIC, AND 123RF.COM

The research group has developed a single-chip transceiver that achieves a communication speed of 80 Gbit/s using the channel 66 defined by the Standard. The research group developed a 300-GHz-band transmitter chip capable of 105 Gbit/s [2] and a receiver chip capable of 32 Gbit/s [3] in the past few years. The group has now integrated a transmitter and a receiver into a single transceiver chip.

"We presented a CMOS transmitter that could do 105 Gbit/s in 2017, but the performance of receivers we developed, or anybody else did for that matter, were way behind [3] for a reason. We can use a technique called 'power combining' in transmitters for performance boosting, but the same technique cannot be applied to receivers.

An ultrafast transmitter is useless unless an equally fast receiver is available. We have finally managed to bring the CMOS receiver performance close to 100 Gbit/s," said Prof. Minoru Fujishima, Graduate School of Advanced Sciences of Matter, Hiroshima University.

"People talk a lot about technological singularity these days. The main point of interest seems to be whether artificial superintelligence will appear. But a more meaningful question to ask myself as an engineer is how we can keep the ever-accelerating technological advancement going. That's a prerequisite. Advances in not only computational power but also in communication speed and capacity within and between computers are vitally important.

You wouldn't want to have a zero-grav operation on board a space plane without real-time connection with earth stations staffed by medical super-AI and doctors. After all, singularity is a self-fulfilling prophecy. It's not something some genius out there will make happen all of a sudden. It will be a distant outcome of what we develop today and tomorrow," said Prof. Fujishima.

"Of course, there still is a long way to go, but I hope we are steadily paving the way to such a day. And don't you worry you might use up your ten-gigabyte monthly quota within hours, because your monthly quota then will be in terabytes," he added.

###

This work was supported by the R&D on Wireless Transceiver Systems with CMOS Technology in 300-GHz Band, as part of an R&D program on Key Technology in Terahertz Frequency Bands of the Ministry of Internal Affairs and Communications, Japan.

References

[1] S. Lee, R. Dong, T. Yoshida, S. Amakawa, S. Hara, A. Kasamatsu, J. Sato, M. Fujishima, "An 80Gb/s 300GHz-Band Single-Chip CMOS Transceiver," IEEE International Solid-State Circuits Conference (ISSCC), 2019.

[2] K. Takano, S. Amakawa, K. Katayama, S. Hara, R. Dong, A. Kasamatsu, I. Hosako, K. Mizuno, K. Takahashi, T. Yoshida, M. Fujishima, "A 105Gb/s 300GHz CMOS Transmitter," IEEE International Solid-State Circuits Conference (ISSCC), pp. 308-309, 2017.

[3] S. Hara, K. Katayama, K. Takano, R. Dong, I. Watanabe, N. Sekine, A. Kasamatsu, T. Yoshida, S. Amakawa, M. Fujishima, "A 32Gbit/s 16QAM CMOS Receiver in 300GHz Band," IEEE International Microwave Symposium (IMS2017), pp. 1-4, 2017.

Media Contacts:

Hiroshima University
Public Relations Group
Email: koho@office.hiroshima-u.ac.jp

National Institute of Information and Communications Technology
Press Office, Public Relations Department
Tel: +81-(0)42-327-6923 E-mail: publicity@nict.go.jp

Panasonic Corporation
Global Communications Department
Tel: +81-(0)3-3574-5664 Fax: +81-(0)3-3574-5699

Norifumi Miyokawa | EurekAlert!

Further reports about: CMOS GHz IEEE ISSCC THz Terahertz self-fulfilling prophecy wireless communication

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

New molten metal hybrid filters from TU Freiberg will make components even safer and more resistant in the future

28.02.2020 | Materials Sciences

Polymers get caught up in love-hate chemistry of oil and water

28.02.2020 | Life Sciences

Two NE tree species can be used in new sustainable building material

28.02.2020 | Architecture and Construction

VideoLinks
Science & Research
Overview of more VideoLinks >>>