Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will mean shift for Internet advertising

20.04.2010
Placing internet ads on websites will be easier and more profitable in the future thanks to a new technology developed at the University of Toronto that allows ads to be resized to fit any available website space.

Internet ads are currently only available in three or four specific sizes, meaning websites must be designed around the ads. The size restrictions greatly limit ad placement options and affect the way ads look on devices such as the iPhone and iPad.

But a new technology, developed by UofT Electrical and Computer Engineering associate professor Parham Aarabi, enables ads to be resized automatically to conform to any web space. Aarabi will present the concept at the World Wide Web 2010 Conference in late April in Raleigh, North Carolina.

"Currently, a significant portion of usable website spaces are not used for advertising because the standard size ads don't fit," says Aarabi, Canada Research Chair in Internet Video, Audio, and Image Search. "Our technology is the first ever to conform ads to any available website space in an automated and practical way. Essentially, advertisers provide a single ad at a preset size, and our technology can, automatically and dynamically, regenerate the ad at any size, resolution, or aspect ratio by taking into account the contents of the ad, relevant text, and other information."

He adds that the technology will translate into profit because formerly wasted web space can be used for advertising.

"Given an online advertising market worth billions of dollars, this technology could significantly increase revenues for publishers, and create new opportunities for advertisers," Aarabi says.

For more information on the technology, please contact:

Parham Aarabi
Associate Professor of Electrical and Computer Engineering
Canada Research Chair in Internet, Video, Audio and Image Search
647-350-6525
parham@ecf.utoronto.ca
University of Toronto media relations
416-978-0100
media.relations@utoronto.ca

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>