Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technologies for the Sixth Generation Cellular Network

26.07.2019

Ultra-rapid Electro-optical Modulators Convert Terahertz into Optical Data Signals - Publication in Nature Photonics

Future wireless data networks will have to reach higher transmission rates and shorter delays, while supplying an increasing number of end devices. For this purpose, network structures consisting of many small radio cells will be required.


Seamless integration of wireless transmission lines into glass-fiber networks results in high-performance data networks. A detailed description of the figure is given at the end of the text.

Credit: IPQ/KIT

To connect these cells, high-performance transmission lines at high frequencies up to the terahertz range will be needed. Moreover, seamless connection to glass fiber networks must be ensured, if possible.

Researchers of Karlsruhe Institute of Technology (KIT) use ultra-rapid electro-optical modulators to convert terahertz data signals into optical signals. This is reported in Nature Photonics (DOI: 10.1038/s41566-019-0475-6).

While the new 5G cellular network technology is still tested, researchers are already working on technologies for the next generation of wireless data transmission. "6G" is to reach far higher transmission rates, shorter delays, and an increased device density, with artificial intelligence being integrated. On the way towards the sixth generation cellular network, many challenges have to be mastered regarding both individual components and their interaction.

Future wireless networks will consist of a number of small radio cells to quickly and efficiently transmit large data volumes. These cells will be connected by transmission lines, which can handle tens or even hundreds of gigabits per second per link. The necessary frequencies are in the terahertz range, i.e. between microwaves and infrared radiation in the electromagnetic spectrum.

In addition, wireless transmission paths have to be seamlessly connected to glass fiber networks. In this way, the advantages of both technologies, i.e. high capacity and reliability as well as mobility and flexibility, will be combined.

Scientists of the KIT Institutes of Photonics and Quantum Electronics (IPQ), Microstructure Technology (IMT), and Radio Frequency Engineering and Electronics (IHE) and the Fraunhofer Institute for Applied Solid State Physics IAF, Freiburg, have now developed a promising approach to converting data streams between the terahertz and optical domains.

As reported in Nature Photonics, they use ultra-rapid electro-optical modulators to directly convert a terahertz data signal into an optical signal and to directly couple the receiver antenna to a glass fiber. In their experiment, the scientists selected a carrier frequency of about 0.29 THz and reached a transmission rate of 50 Gbit/s.

"The modulator is based on a plasmonic nanostructure and has a bandwidth of more than 0.36 THz," says Professor Christian Koos, Head of IPQ and Member of the Board of Directors of IMT. "Our results reveal the great potential of nanophotonic components for ultra-rapid signal processing." The concept demonstrated by the researchers will considerably reduce technical complexity of future radio base stations and enable terahertz connections with very high data rates - several hundred gigabits per second are feasible.

Figure:

Seamless integration of wireless links into fiber-optical networks is the key to high-performance data networks: future cellular networks will consist of many small radio cells that can be connected flexibly by high-performance THz transmission links. At the receiver, THz signals can be converted directly into optical signals with the help of ultra-rapid plasmonic modulators and transmitted via glass fiber networks.

###

Original Publication:

S. Ummethala, T. Harter, K. Koehnle, Z. Li, S. Muehlbrandt, Y. Kutuvantavida, J. Kemal, J. Schaefer, A. Tessmann, S. K. Garlapati, A. Bacher, L. Hahn, M. Walther, T. Zwick, S. Randel, W. Freude, C. Koos: THz-to-Optical Conversion in Wireless Communications Using an Ultra-Broadband Plasmonic Modulator. Nature Photonics, 2019. DOI: 10.1038/s41566-019-0475-6

For the abstract, click https://doi.org/10.1038/s41566-019-0475-6

More about the KIT Information · Systems · Technologies Center: <http://www.kcist.kit.edu>

Press contact: Kosta Schinarakis, Redakteur/Pressereferent, Tel.: +49 721 608-41956, Fax: +49 721 608-43568, E-Mail: <schinarakis@kit.edu>

Being „The Research University in the Helmholtz Association", KIT creates and imparts knowledge for the society and the environment. It is the objective to make significant contributions to the global challenges in the fields of energy, mobility and information. For this, about 9,300 employees cooperate in a broad range of disciplines in natural sciences, engineering sciences, economics, and the humanities and social sciences. KIT prepares its 25,100 students for responsible tasks in society, industry, and science by offering research-based study programs. Innovation efforts at KIT build a bridge between important scientific findings and their application for the benefit of society, economic prosperity, and the preservation of our natural basis of life.

Media Contact

Monika Landgraf
presse@kit.edu
49-721-608-21105

 @KITKarlsruhe

http://www.kit.edu/index.php 

Monika Landgraf | EurekAlert!
Further information:
https://www.kit.edu/kit/english/pi_2019_095_technologies-for-the-sixth-generation-cellular-network.php
http://dx.doi.org/10.1038/s41566-019-0475-6

More articles from Information Technology:

nachricht Predictive touch response mechanism is a step toward a tactile internet
24.01.2020 | The Optical Society

nachricht The easy route the easy way: New chip calculates the shortest distance in an instant
23.01.2020 | Tokyo University of Science

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Integrate Micro Chips for electronic Skin

Researchers from Dresden and Osaka present the first fully integrated flexible electronics made of magnetic sensors and organic circuits which opens the path towards the development of electronic skin.

Human skin is a fascinating and multifunctional organ with unique properties originating from its flexible and compliant nature. It allows for interfacing with...

Im Focus: Dresden researchers discover resistance mechanism in aggressive cancer

Protease blocks guardian function against uncontrolled cell division

Researchers of the Carl Gustav Carus University Hospital Dresden at the National Center for Tumor Diseases Dresden (NCT/UCC), together with an international...

Im Focus: New roles found for Huntington's disease protein

Crucial role in synapse formation could be new avenue toward treatment

A Duke University research team has identified a new function of a gene called huntingtin, a mutation of which underlies the progressive neurodegenerative...

Im Focus: A new look at 'strange metals'

For years, a new synthesis method has been developed at TU Wien (Vienna) to unlock the secrets of "strange metals". Now a breakthrough has been achieved. The results have been published in "Science".

Superconductors allow electrical current to flow without any resistance - but only below a certain critical temperature. Many materials have to be cooled down...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

„Advanced Battery Power“- Conference, Contributions are welcome!

07.01.2020 | Event News

 
Latest News

Researchers discover vaccine to strengthen the immune system of plants

24.01.2020 | Life Sciences

Brain-cell helpers powered by norepinephrine during fear-memory formation

24.01.2020 | Life Sciences

Engineered capillaries model traffic in tiny blood vessels

24.01.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>