Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technological crystal ball boosts AIDS survival

11.08.2008
A cure for the virus that causes AIDS may still be beyond our grasp, but European researchers have developed a predictive software system for HIV that could help extend the lives of victims of the killer disease.

Despite significant progress in the management of the HIV virus that causes AIDS, today’s best treatments do not totally eradicate the virus. The virus’ ability to develop resistance to current antiretroviral therapy (ARVT) means the therapy needs to be changed if it is to continue to be effective.

By focusing on the genotype of the virus – information which is inexpensive and easily available – and combining this with clinical information about the patient, researchers behind the EU-funded EuResist project developed new mathematical prediction models.

"In cases where there is a long history of resistance, this is an indicator of death, so it is important to try all the possibilities," says Francesca Incardona, EuResist’s coordinator. For non-crucial cases, this may help reduce the cost of the therapy, by choosing the right combination of drugs that work for the longest time, she suggests.

... more about:
»Aids »HIV

EuResist’s key achievement was to combine data from HIV databases in Italy, Sweden and Germany, giving "probably the largest database of its kind in the world", according to Incardona.

Combining the world’s largest databases and newly created software has given the project the ability to predict how the HIV virus will react in a certain person given a certain combination of drugs. And this performance is better than the current state-of-the-art predictive systems available to medical researchers, says Incardona, who is based at Italian company Informa.

The achievements of EuResist translate into better medicine, lower treatment-related toxicity and cost savings – giving considerable hope to the 40 million people infected with the virus worldwide.

Strength in numbers

Combining the data from the three national databases was the first and probably most important step, suggests Incardona. It was not only a cyber-merger, but a physical merger, too.

All of the information is now located in what the EU researchers claim as the world’s biggest database of AIDS resistance-related information with more than 18,000 patients, 64,000 therapies, and 240,000 viral mode measurements.

With all this data, medical researchers and doctors can now predict what would happen if a patient with a certain type of virus and certain viral load is given a certain combination of ARVT.

Putting the jigsaw together

Accurate and reliable prediction of future responses to treatment is based on three basic pieces of information: A quantification of the viral load, a definition of the viral genotype, and the viral load after eight weeks of treatment.

The researchers then include other information, such as how the virus is transmitted – sexual or via a blood transfusion – the gender of the person, the sexual preference of the person, whether they are drug abusers and other.

Three different but complementary programmes were developed by the project partners. Each uses the same type of mathematical model to classify a given drug combination as successful or unsuccessful, but is fed with different information. In fact, three approaches are used to extract data from the database to account for different aspects of the disease evolution.

So how well do these engines perform? The researchers evaluated them separately (and in combination) and found that EuResist’s model was 76 percent accurate, which was better than the state-of-the-art HIV resistance database at Stanford University, USA.

Compared to the existing systems, which calculate only according to single drugs, the EuResist model can account for combinations of therapies, bringing the results closer to everyday situations.

Sharing the knowledge

The EU-funded project is drawing to a close but the partners are determined to create a legacy. Researchers from the three academic partners – Italy’s University of Siena, Sweden’s Karolinska Institute, and Germany’s Max Planck Institute – together with Informa have created the EuResist Network GEIE, a European not-for-profit organisation.

The aim of the network is to maintain the database and make both it and the predictive programs available to medical researchers and doctors all over the world.

At the centre of this network is a web interface, which Incardona says will be free on the web for the global medical community.

And the potential of the project does not stop with the virus that causes AIDS. The breakthroughs from EuResist may also be applicable to every other type of virus that develops resistance to similar prolonged antiretroviral treatments, like hepatitis B and C.

EuResist received funding from the EU's Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

Further reports about: Aids HIV

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication

16.07.2018 | Physics and Astronomy

New players, standardization and digitalization for more rail freight transport

16.07.2018 | Transportation and Logistics

Researchers discover natural product that could lead to new class of commercial herbicide

16.07.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>