Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Delivers Development Aid Via Cell Phone Animations

01.03.2011
A farmer in Niger learns how to protect his crops from insects. A resident of Port-au-Prince or a rural Haitian village learns how to avoid exposure to cholera. An entrepreneur in Mali gets step-by-step instructions on extracting the oil from shea seeds to make shea butter she can sell at a local market.

These people are benefiting from a new approach to sustainable development education that reaches a much larger audience than traditional methods – and at a fraction of the cost. The initiative, led by a team of extension educators and faculty at the University of Illinois, produces animated educational videos that people around the world can watch at home, over and over again, on their cell phones.

“This is a very different paradigm from some other current development projects, where U.S.-based educators are flown to another part of the world, interact with people in the field for a few weeks to several months, and leave,” said University of Illinois entomology professor Barry Pittendrigh, a member of the team that is developing the animations. “From a financial perspective, this is a much cheaper way to do international development.” (Watch a video about the project.)

The initiative, Scientific Animations Without Borders, takes advantage of the widespread availability of cell phones in the developing world. According to recent research, nearly 60 percent of the 2.4 billion cell phone users in the world live in developing countries.

As of 2006, more than 150 million cell phone users lived in Africa, for example, with cell phone technology spreading faster there than anywhere else in the world.

Animation reduces the costs associated with making a video on a particular topic, and allows the videos themselves to have near-universal appeal. The videos are narrated, and the narration can be recorded in any language with any dialect or accent.

“The way these animated videos are designed, they can be easily adapted to other cultures,” said Julia Bello-Bravo, a University of Illinois field extension specialist and leader of the project. “We are also capturing indigenous knowledge and putting it into the video, so when they see the video it is familiar to them.”

The first animated videos developed by the Illinois team (with funding from the Dry Grain Pulses CRSP - U.S. Agency for International Development and created in collaboration with aid workers and farmers in West Africa) demonstrate safe insect-control methods that are already in use in some regions. The scientifically validated techniques make use of local plants or widely available materials – such as black plastic sheets, ashes, or plastic bags – to control or eradicate insect pests from cowpeas, a staple in many parts of Africa, Asia, and Central and South America.

In one video, a farmer processes the fruits of the neem tree (Azadirachta indica) to make a liquid insecticide that he sprays on his cowpea crop. The neem is a drought-tolerant tree found in Southeast Asia and parts of Sub-Saharan Africa. Farmers working with extension educators in West Africa developed the methods depicted in the video, Bello-Bravo said. Scientific studies had validated the methods and the materials needed were cheap and widely available, she said. But explaining the technique to large numbers of people would be difficult and costly.

“In Mali they are using this technique and it’s very effective, but in Burkina Faso, for example, there are not many people using this technique,” she said. “If we can show these animated videos in different parts of West Africa where this tree grows, we can get the information to many, many more people.”

A newer video demonstrates how to boil or treat water to avoid exposure to cholera. This video is available in English, French, Haitian Creole and other languages.

The process of producing the videos is fairly fast and cheap. Communicating primarily via e-mail, aid workers, farmers, entrepreneurs and an animator collaborate on the videos with the Illinois team. Once the content is approved, the collaborators produce two scripts: one to be read by a narrator and the other describing the actions the animated character is to perform. The animator builds the animation in stages with input from the collaborative team. Once a video is complete, the voice-over narration can be swapped out to match that of a particular country or region.

In this way, the team is building a library of educational videos that can be distributed around the world via e-mail or through the sustainable development website, SusDeViki.

(For more information about SusDeViki, see: “From Llama Herders to Chai Wallas: New Website Will Engage the World.”)

Future videos will touch on other agricultural or health issues, such as bed bugs, lice or malaria, and will target viewers in the developed and developing world.

The team at Illinois also includes extension educator Francisco Seufferheld and entomology department graduate students Tolulope Agunbiade and Laura Steele, with technical assistance from Martin Booth Hodges. The group collaborates most closely with on-site field educators in Benin, Burkina Faso, Mali, Niger, and Nigeria. The team works with an international cell phone deployment network through Kathleen Robbins. They are also collaborating with Dr. Madhu Viswanathan on animations for marketplace literacy. Daniel Guillot heads the animation team.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>