Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Teaching machines to see

21.12.2015

New smartphone-based system could accelerate development of driverless cars

Two newly-developed systems for driverless cars can identify a user's location and orientation in places where GPS does not function, and identify the various components of a road scene in real time on a regular camera or smartphone, performing the same job as sensors costing tens of thousands of pounds.


This is an example of SegNet in action: the separate components of the road scene are all labelled in real time.

Credit: Alex Kendall

The separate but complementary systems have been designed by researchers from the University of Cambridge and demonstrations are freely available online. Although the systems cannot currently control a driverless car, the ability to make a machine 'see' and accurately identify where it is and what it's looking at is a vital part of developing autonomous vehicles and robotics.

The first system, called SegNet, can take an image of a street scene it hasn't seen before and classify it, sorting objects into 12 different categories -- such as roads, street signs, pedestrians, buildings and cyclists - in real time. It can deal with light, shadow and night-time environments, and currently labels more than 90% of pixels correctly. Previous systems using expensive laser or radar based sensors have not been able to reach this level of accuracy while operating in real time.

Users can visit the SegNet website and upload an image or search for any city or town in the world, and the system will label all the components of the road scene. The system has been successfully tested on both city roads and motorways.

For the driverless cars currently in development, radar and base sensors are expensive - in fact, they often cost more than the car itself. In contrast with expensive sensors, which recognise objects through a mixture of radar and LIDAR (a remote sensing technology), SegNet learns by example -- it was 'trained' by an industrious group of Cambridge undergraduate students, who manually labelled every pixel in each of 5000 images, with each image taking about 30 minutes to complete. Once the labelling was finished, the researchers then took two days to 'train' the system before it was put into action.

"It's remarkably good at recognising things in an image, because it's had so much practice," said Alex Kendall, a PhD student in the Department of Engineering. "However, there are a million knobs that we can turn to fine-tune the system so that it keeps getting better."

SegNet was primarily trained in highway and urban environments, so it still has some learning to do for rural, snowy or desert environments -- although it has performed well in initial tests for these environments.

The system is not yet at the point where it can be used to control a car or truck, but it could be used as a warning system, similar to the anti-collision technologies currently available on some passenger cars.

"Vision is our most powerful sense and driverless cars will also need to see," said Professor Roberto Cipolla, who led the research. "But teaching a machine to see is far more difficult than it sounds."

As children, we learn to recognise objects through example -- if we're shown a toy car several times, we learn to recognise both that specific car and other similar cars as the same type of object. But with a machine, it's not as simple as showing it a single car and then having it be able to recognise all different types of cars. Machines today learn under supervision: sometimes through thousands of labelled examples.

There are three key technological questions that must be answered to design autonomous vehicles: where am I, what's around me and what do I do next. SegNet addresses the second question, while a separate but complementary system answers the first by using images to determine both precise location and orientation.

The localisation system designed by Kendall and Cipolla runs on a similar architecture to SegNet, and is able to localise a user and determine their orientation from a single colour image in a busy urban scene. The system is far more accurate than GPS and works in places where GPS does not, such as indoors, in tunnels, or in cities where a reliable GPS signal is not available.

It has been tested along a kilometre-long stretch of King's Parade in central Cambridge, and it is able to determine both location and orientation within a few metres and a few degrees, which is far more accurate than GPS -- a vital consideration for driverless cars. Users can try out the system for themselves here.

The localisation system uses the geometry of a scene to learn its precise location, and is able to determine, for example, whether it is looking at the east or west side of a building, even if the two sides appear identical.

"Work in the field of artificial intelligence and robotics has really taken off in the past few years," said Kendall. "But what's cool about our group is that we've developed technology that uses deep learning to determine where you are and what's around you - this is the first time this has been done using deep learning."

"In the short term, we're more likely to see this sort of system on a domestic robot - such as a robotic vacuum cleaner, for instance," said Cipolla. "It will take time before drivers can fully trust an autonomous car, but the more effective and accurate we can make these technologies, the closer we are to the widespread adoption of driverless cars and other types of autonomous robotics."

The researchers are presenting details of the two technologies at the International Conference on Computer Vision in Santiago, Chile.

Media Contact

Sarah Collins
sarah.collins@admin.cam.ac.uk
44-012-237-65542

 @Cambridge_Uni

http://www.cam.ac.uk 

Sarah Collins | EurekAlert!

Further reports about: GPs autonomous vehicles deep learning orientation vehicles

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>