Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish research can make Super Mario more realistic

04.03.2009
Computer games are being developed at an ever more rapid pace, and the technical demands are rising, not least regarding graphics boards.

At Mälardalen University in Sweden, researchers have now found a solution to a problem that often arises when new computer games are constructed, namely how you can efficiently make sure that the animated figures don't run right through each other.

Researcher Thomas Larsson is presenting a new model that enables complex figures to collide with each other in a credible way - preferably with sound effects, deformations, and other consequences, just as in reality.

In his dissertation he presents faster methods for discovering collisions in interactive simulations with computer graphics. The methods function both with rigid bodies and various types of deformable bodies. Besides computer games, simulations in robotics, virtual surgery, and visualization are suitable applications for the methods.

"Today regular computers can draw realistic images of complex 3D environments in the blink of an eye. This is thoroughly exploited in modern computer games, for example. The images are therefore better and better in quality, so people even use terms like photographic realism. These images are generated by a powerful graphics board in the computer, which draws millions of tiny surfaces, usually triangles, in a few milliseconds."

"But it's not enough simply to draw the images. To animate or simulate objects that move or fly around on the screen, the objects need to be able to react to collisions. In many cases the collision calculations, just like the image generation itself, have to be done in a few milliseconds, otherwise the interactivity and the experience are ruined."

All this is self-evident in the real world where objects follow the rules of physics governing movement and collisions. But in a computer simulation objects go right through each other as if they had never collided, unless special measures are taken. These measures require methods that use calculations to discover that objects are actually colliding with each other and then take suitable measures. In some cases it is sufficient to have the objects change direction by bouncing off each other. In other cases they may need to be dented (deformed), break into pieces, or even explode. Future versions of "Super Mario" will require superfast collision calculations in order to stimulate and visualize characters' movements and interaction with their surroundings in a realistic manner.

Contact information for Thomas Larsson phone +46-21 10 15 14 or email:thomas.larsson@mdh.se

Pressofficer Peter Mannerfelt: +46-705 353 432 or peter.mannerfelt@mdh.se

Thomas Larsson will publicly defend his dissertation Adaptive Bounding Volume Hierarchies for Efficient Collision Queries March 5.

Thomas Larsson is an assistant professor of computer science at Mälardalen University, where one of his duties is to teach on the Computer Science Program Specializing in Game Development.

Peter Mannerfelt | idw
Further information:
http://www.mdh.se
http://www.vr.se

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>