Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputing helps study two-dimensional materials

04.02.2019

High-performance computing helps researchers understand experiments for observing real-time motion of lithium atoms in bi-layer graphene, paving the way for designing new materials for batteries and other electronics.

Whether it is high-temperature superconductors and improved energy storage to bendable metals and fabrics capable of completely wicking liquids, materials scientists study and understand the physics of interacting atoms in solids to ultimately find ways to improve materials we use in every aspect of daily life.


This is an atomistic model illustrating a multilayer of lithium atoms between two graphene sheets.

Credit: Dr. Mahdi Ghorbani-Asl, HZDR. See M. Kühne, et al., Nature 564 (2018).

The frontier of materials science research lies not in alchemical trial and error, though; to better understand and improve materials today, researchers must be able to study material properties at the atomic scale and under extreme conditions.

As a result, researchers have increasingly come to rely on simulations to complement or inform experiments into materials' properties and behaviours.

A team of researchers led by Dr. Arkady Krasheninnikov, physicist at the Helmholtz-Zentrum Dresden-Rossendorf, partners with experimentalists to answer fundamental questions about materials' properties, and the team recently had a big breakthrough--experimentalists were able to observe in real time lithium atoms' behaviour when placed between two graphene sheets.

A graphene sheet is what researchers consider a 2D material, as it is only one atom thick, which made it possible to observe lithium atom motion in a transmission electron microscopy (TEM) experiments.

With access to supercomputing resources through the Gauss Centre of Supercomputing (GCS), Krasheninnikov's team was able to use the High-Performance Computing Center Stuttgart's (HLRS') Hazel Hen supercomputer to simulate, confirm, and expand on the team's experimental findings. The collaborative work was recently published in Nature.

"2D materials exhibit useful and exciting properties, and can be used for many different applications, not only as a support in TEM," Krasheninnikov says. "Essentially, 2D materials are at the cutting edge of materials research. There are likely about a couple thousands of these materials, and roughly 50 have actually been made."

Under the microscope

To better understand 2D materials experimentally, researchers routinely use TEM nowadays. The method allows researchers to suspend small, thin pieces of a material, then run a high-energy electron beam over it, ultimately creating a magnified image of the material that researchers can study, much like a movie projector takes images from a reel and projects them onto a larger screen. With this view into a material, experimentalists can better chart and estimate atoms' positions and arrangements.

The high-energy beam can do more than just help researchers observe materials, though--it is also a tool to study 2D materials' electronic properties. Moreover, researchers can use the high-energy electrons from TEM to knock out individual atoms from a material with high precision to see how the material's behavior changes based on the structural change.

Recently, experimentalists from Max Planck Institute for Solid State Research, Stuttgart and the University of Ulm wanted to better understand how lithium particles interacted between two atom-thin graphene sheets. Better understanding lithium intercalation, or placing lithium between layers of another material (in this case, graphene), helps researchers develop new methods for designing better battery technologies. Experimentalists got data from TEM and asked Krasheninnikov and his collaborators to rationalize the experiment using simulation.

Simulations allow researchers to see a material's atomic structure from a variety of different angles, and they also can help speed up the trial-and-error approach to designing new materials purely through experiment. "Simulations cannot do the full job, but they can really limit the number of possible variants, and show the direction which way to go," Krasheninnikov says. "Simulations save money for people working in fundamental research and industry, and as a result, computer modelling is getting more and more popular."

In this case, Krasheninnikov and his collaborators found that the experimentalists' atomic coordinates, or the positions of particles in the material, would not be stable, meaning that the material would defy the laws of quantum mechanics. Using simulation data, Krasheninnikov and his collaborators suggested a different atomic structure, and when the team re-ran its experiment, it found a perfect match with the simulation.

"Sometimes you don't really need high theory to understand the atomic structure based on experimental results, but other times it really is impossible to understand the structure without accurate computational approaches that go hand-in-hand with the experiment," Krasheninnikov says.

The experimentalists were able to, for the first time, watch in real-time how lithium atoms behave when placed between two graphene sheets, and with the help of simulations, get insights into how the atoms were arranged. It was previously assumed that in such an arrangement, the lithium would be structured as a single atomic layer, but the simulation showed that lithium could form bi- or trilayers, at least in bi-layer graphene, leading researchers to look for new ways to improve battery efficiency.

Charging forward

Krasheninnikov noted that, while simulation has made big strides over the last decade, there is still room for improvement. The team can effectively run first-principles simulations of 1,000-atom systems over periods of time to observe short-term (nanosecond time scale) material interactions. Larger core counts on next-generation supercomputers will allow researchers to include more atoms in their simulations, meaning that they can model more realistic and meaningful slices of a material in question.

The greater challenge, according to Krasheninnikov, relates to how long researchers can simulate material interactions. In order to study phenomena that happen over longer periods of time, such as how stress can form and propagate a crack in metal, for example, researchers need to be able to simulate minutes or even hours to see how the material changes. That said, researchers also need to take extremely small time steps in their simulations to accurately model the ultra-fast atomic interactions. Simply using more compute cores allows researchers to do calculations for larger systems faster, but cannot make each time step go faster if a certain 'parallelization' threshold is reached.

Breaking this logjam will require researchers to rework algorithms to more efficiently calculate each time step across a large amount of cores. Krasheninnikov also indicated that designing codes based on quantum computing could enable simulations capable of observing material phenomena happening over longer periods of time--quantum computers" may be perfect for simulating quantum phenomena. Regardless of what direction researchers go, Krasheninnikov noted that access to supercomputing resources through GCS and PRACE enables him and his team to keep making progress. "Our team cannot do good research without good computing resources," he said.

Media Contact

Eric Gedenk
e.gedenk@gauss-centre.eu
49-711-685-62517

www.gauss-centre.eu 

Eric Gedenk | EurekAlert!
Further information:
http://www.gauss-centre.eu/SharedDocs/Meldungen/GAUSS-CENTRE/EN/2019/news_02_2D_Materials_HZDR.html
http://dx.doi.org/10.1038/s41586-018-0754-2

More articles from Information Technology:

nachricht Current generation via quantum proton transfer
04.02.2019 | National Institute for Materials Science, Japan

nachricht Computational algorithm to reduce electromagnetic noise in electronic circuits developed
04.02.2019 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Invisible tags: Physicists at TU Dresden write, read and erase using light

A team of physicists headed by Prof. Sebastian Reineke of TU Dresden developed a new method of storing information in fully transparent plastic foils. Their innovative idea was now published in the renowned online journal “Science Advances”.

Prof. Reineke and his LEXOS team work with simple plastic foils with a thickness of less than 50 µm, which is thinner than a human hair. In these transparent...

Im Focus: IT in cars: Computers on standby

In the future, cars will exchange data via radio and warn each other about obstacles and accidents. There are currently various radio standards in existence to allow this. However, it is almost impossible to compare them, because the requisite hardware is not yet on the market. To address this lack, researchers at the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI have developed a software system that will enable users to analyze the future wireless technology. For manufacturers, this is an ideal solution for testing interesting radio applications at an early stage.

Slowly but surely, the automobile is developing into the autonomous vehicle, as new functions are added with each new generation. Proximity radars are by now...

Im Focus: Making ultrafast lasers faster

Lasers with ultrashort pulses in the picosecond and femtosecond range are often referred to as ultrafast lasers. They are known for their ultra-precise ablation and cutting results. Unfortunately, processing with such lasers takes time. To address this issue, a new research project, funded by the European Commission, aims to make material processing with ultrafast lasers up to a hundred times faster.

Ultrashort pulsed (USP) or ultrafast lasers can do something very unique: They ablate almost any material without causing a thermal load of the adjacent...

Im Focus: New analysis methods facilitate the evaluation of complex engineering data

A further increase in the performance of supercomputers is expected over the next few years. So-called exascale computers will be able to deliver more precise simulations. This leads to considerably more data. Fraunhofer SCAI develops efficient data analysis methods for this purpose, which provide the engineer with detailed insights into the complex technical contexts.

Simulations on supercomputers answer important industrial questions, such as how air flows behave in air conditioning systems, on rotor blades or for entire...

Im Focus: Researchers wild about zigzags

Breakthrough in graphene research: large, stable pieces of graphene produced with unique edge pattern

Graphene is a promising material for use in nanoelectronics. Its electronic properties depend greatly, however, on how the edges of the carbon layer are formed.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

 
Latest News

Researchers report advances in stretchable semiconductors, integrated electronics

04.02.2019 | Power and Electrical Engineering

Microbes hitched to insects provide a rich source of new antibiotics

04.02.2019 | Life Sciences

Computational algorithm to reduce electromagnetic noise in electronic circuits developed

04.02.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>