Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer simulations confirm observations of 2015 India/Pakistan heat waves

16.12.2016

A paper published this week during the American Geophysical Union (AGU) fall meeting in San Francisco points to new evidence of human influence on extreme weather events.

Three researchers from Lawrence Berkeley National Laboratory (Berkeley Lab) are among the co-authors on the paper, which is included in "Explaining Extreme Events of 2015 from a Climate Perspective," a special edition of the Bulletin of the American Meteorological Society (BAMS) released December 15 at the AGU meeting.


Hottest daytime high temperatures in India during the week May 24-30, 2015. NOAA Climate.gov map based on interpolated weather station data provided by the India Meterological Department.

Credit: NOAA

The paper, "The Deadly Combination of Heat and Humidity in India and Pakistan in Summer 2015," examined observational and simulated temperature and heat indexes, concluding that the heat waves in the two countries "were exacerbated by anthropogenic climate change." While these countries typically experience severe heat in the summer, the 2015 heat waves--which occurred in late May/early June in India and in late June/early July in Pakistan--have been linked to the deaths of nearly 2,500 people in India and 2,000 in Pakistan.

"I was deeply moved by television coverage of the human tragedy, particularly parents who lost young children," said Michael Wehner, a climate researcher at Berkeley Lab and lead author on the paper, who has studied extreme weather events and anthropogenic climate change extensively. This prompted him and collaborators from Berkeley Lab, the Indian Institute of Technology Delhi and UC Berkeley to investigate the cause of the 2015 heat waves and determine if the two separate meteorological events were somehow linked.

They used simulations from the Community Atmospheric Model version 5 (CAM5), the atmospheric component of the National Center for Atmospheric Research's Community Earth System Model, performed by Berkeley Lab for the C20C+ Detection and Attribution Project. Current climate model-based products are not optimized for research on the attribution of the human influence on extreme weather in the context of long-term climate change; the C20C+ Detection and Attribution Project fills this gap by providing large ensembles of simulation data from climate models, running at relatively high spatial resolution.

The experimental design described in the BAMS paper used "factual" simulations of the world and compared them to "counterfactual" simulations of the world that might have been had humans not changed the composition of the atmosphere by emitting large amounts of carbon dioxide, explained Dáithí Stone, a research scientist in Berkeley Lab's Computational Research Division and second author on the BAMS paper.

"It is relatively common to run one or a few simulations of a climate model within a certain set of conditions, with each simulation differing just in the precise weather on the first day of the simulation; this difference in the first day propagates through time, providing different realizations of what the weather 'could have been,'" Stone said. "The special thing about the simulations used here is that we ran a rather large number of them. This was important for studying a rare event; if it is rare, then you need a large amount of data in order to have it occurring frequently enough that you can understand it."

The researchers examined both observational and simulated temperature alone as well as the heat index, a measure incorporating both temperature and humidity effects. From a quality-controlled weather station observational dataset, they found the potential for a very large, human-induced increase in the likelihood of the magnitudes of the two heat waves. They then examined the factual and counterfactual simulations to further investigate the presence of a human influence.

"Observations suggested the human influence; simulations confirmed it," Wehner said.

The research team also found that, despite being close in location and time, the two heat waves were "meteorologically independent." Even so, Wehner emphasized, "the India/Pakistan paper confirms that the chances of deadly heat waves have been substantially increased by human-induced climate change, and these chances will certainly increase as the planet continues to warm."

Data from Berkeley Lab's simulations were also analyzed as part of another study included in the special edition of BAMS released at the AGU meeting. That study, "The Late Onset of the 2015 Wet Season in Nigeria," which was led by the Nigerian Meteorological Agency, explores the role of greenhouse gas emissions in changing the chance of a late wet season, as occurred over Nigeria in 2015.

"The C20C+ D&A Project is continuing to build its collection of climate model data with the intention of supporting research like this around the world," Stone said.

The C20C+ D&A portal is hosted and supported by Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility, and the simulations for the two papers were run on NERSC's Hopper supercomputer, while the data analysis was done on NERSC's Edison and Cori systems. The simulations were conducted as part of a program dedicated to advancing our understanding of climate extremes and enhancing our ability to attribute and project changes in their risk because of anthropogenic climate change. The research was supported by the DOE Office of Science and the National Science Foundation.

"Explaining Extreme Events of 2015 from a Climate Perspective," a special edition of the Bulletin of the American Meteorological Society, can be accessed here: http://www.ametsoc.org/ams/index.cfm/publications/bulletin-of-the-american-meteorological-society-bams/explaining-extreme-events-from-a-climate-perspective/

###

The Lawrence Berkeley National Laboratory (Berkeley Lab) Computing Sciences organization provides the computing and networking resources and expertise critical to advancing the Department of Energy's research missions: developing new energy sources, improving energy efficiency, developing new materials and increasing our understanding of ourselves, our world and our universe.

ESnet, the Energy Sciences Network, provides the high-bandwidth, reliable connections that link scientists at 40 DOE research sites to each other and to experimental facilities and supercomputing centers around the country. The National Energy Research Scientific Computing Center (NERSC) powers the discoveries of 6,000 scientists at national laboratories and universities, including those at Berkeley Lab's Computational Research Division (CRD). CRD conducts research and development in mathematical modeling and simulation, algorithm design, data storage, management and analysis, computer system architecture and high-performance software implementation.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States.

Media Contact

Kathy Kincade
kkincade@lbl.gov
510-495-2124

 @BerkeleyLab

http://www.lbl.gov 

Kathy Kincade | EurekAlert!

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>