Student-Built Satellite Scheduled for Launch

The Radio Aurora Explorer (RAX) is slated for launch Nov. 19 from Kodiak, Alaska. Its primary mission is to study how plasma instabilities in the highest layers of the atmosphere disrupt communication and navigation signals between Earth and orbiting satellites.

Working with scientists, students will use the data from RAX to build models that can forecast when these anomalies will occur. This will enable satellite operators to plan communications and operations around these disruptions.

“People rely on satellites on a daily basis for weather information, communications systems and defense. If the operators can't get their commands up, then the satellites can't perform their intended functions,” said Matt Bennett, RAX team leader.

“The space weather anomalies that RAX will study are called magnetic field-aligned plasma irregularities,” Bennett said. “When these irregularities occur, signals from the ground are scattered and the satellite doesn't receive them. They can form anywhere around the globe, but are a major problem at northern latitudes where we see other space weather phenomena such as the Aurora Borealis, or the Northern Lights.”

Bennett, who graduated in May with a master's in space systems engineering and now works at the NASA Jet Propulsion Laboratory, led a team of approximately 20 students from across the College of Engineering who designed, built and tested RAX. After launch, these students will take charge of spacecraft operations while it is in orbit. They will send commands, conduct science experiments, study the performance of spacecraft components, and analyze the science data collected by a network of communication stations on the ground.

“I'm incredibly impressed with these students,” said team adviser James Cutler, an assistant professor in the departments of Aerospace Engineering and Atmospheric, Oceanic and Space Sciences. “They're passionate. They're excited. They're, in many ways, inspirational.”

RAX is a three-unit CubeSat, which is three times the length of a standard CubeSat. CubeSats are approximately four inches per side. They are designed to fit inside a standard pod mechanism that can be attached to launch vehicles when there is spare mass and volume for other satellites to share the launch.

“There is a growing interest in CubeSats, especially for student projects, as they offer relatively inexpensive and simple access to space,” Cutler said.

The students involved in this project range from undergraduate to graduate students from the Aerospace Engineering, Electrical Engineering and Computer Science, and Atmospheric, Oceanic and Space Sciences departments. Many of these students are also part of the Student Space Systems Fabrication Lab, or S3FL, an organization dedicated to providing students with practical space systems design and fabrication experience.

While this will be the first stand-alone spacecraft built by students to go into orbit, it is part of a long history of space research at U-M. University of Michigan researchers have built or are involved with instruments currently aboard spacecraft on 14 missions across the solar system. And a host of other additional suborbital remote sensing and mass spectrometry spacecraft and satellite projects are underway through the Space Physics Research Laboratory.

The RAX project is funded by the National Science Foundation.

For more information:

RAX Website: http://rax.engin.umich.edu/

2008 Press release: Researchers and students to develop small CubeSat satellites: http://www.ns.umich.edu/htdocs/releases/story.php?id=6760

S3FL: http://esse.engin.umich.edu/s3fl/

James Cutler: http://aerospace.engin.umich.edu/people/faculty/cutler/index.html

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At $160 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Find out more at http://www.engin.umich.edu/.

EDITORS: Watch and link to a video at: http://www.ns.umich.edu/podcast/video2.php?id=1258

Media Contact

Nicole Casal Moore Newswise Science News

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors