Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strength in numbers

05.03.2015

Researchers develop the first-ever quantum device that detects and corrects its own errors

When scientists develop a full quantum computer, the world of computing will undergo a revolution of sophistication, speed and energy efficiency that will make even our beefiest conventional machines seem like Stone Age clunkers by comparison.


This is a photograph of the nine qubit device. The device consists of nine superconducting 'Xmon' transmons in a row. Qubits interact with their nearest neighbors to detect and correct errors.

Credit: Julian Kelly

But, before that happens, quantum physicists like the ones in UC Santa Barbara's physics professor John Martinis' lab will have to create circuitry that takes advantage of the marvelous computing prowess promised by the quantum bit ("qubit"), while compensating for its high vulnerability to environmentally-induced error.

In what they are calling a major milestone, the researchers in the Martinis Lab have developed quantum circuitry that self-checks for errors and suppresses them, preserving the qubits' state(s) and imbuing the system with the highly sought-after reliability that will prove foundational for the building of large-scale superconducting quantum computers.

It turns out keeping qubits error-free, or stable enough to reproduce the same result time and time again, is one of the major hurdles scientists on the forefront of quantum computing face.

"One of the biggest challenges in quantum computing is that qubits are inherently faulty," said Julian Kelly, graduate student researcher and co-lead author of a research paper that was published in the journal Nature. "So if you store some information in them, they'll forget it."

Unlike classical computing, in which the computer bits exist on one of two binary ("yes/no", or "true/false") positions, qubits can exist at any and all positions simultaneously, in various dimensions. It is this property, called "superpositioning," that gives quantum computers their phenomenal computational power, but it is also this characteristic which makes qubits prone to "flipping," especially when in unstable environments, and thus difficult to work with.

"It's hard to process information if it disappears," said Kelly.

However, that obstacle may just have been cleared by Kelly, postdoctoral researcher Rami Barends, staff scientist Austin Fowler and others in the Martinis Group.

The error process involves creating a scheme in which several qubits work together to preserve the information, said Kelly. To do this, information is stored across several qubits.

"And the idea is that we build this system of nine qubits, which can then look for errors," he said. Qubits in the grid are responsible for safeguarding the information contained in their neighbors, he explained, in a repetitive error detection and correction system that can protect the appropriate information and store it longer than any individual qubit can.

"This is the first time a quantum device has been built that is capable of correcting its own errors," said Fowler. For the kind of complex calculations the researchers envision for an actual quantum computer, something up to a hundred million qubits would be needed, but before that a robust self-check and error prevention system is necessary.

Key to this quantum error detection and correction system is a scheme developed by Fowler, called the surface code. It uses parity information -- the measurement of change from the original data (if any) -- as opposed to the duplication of the original information that is part of the process of error detection in classical computing. That way, the actual original information that is being preserved in the qubits remains unobserved.

Why? Because quantum physics.

"You can't measure a quantum state, and expect it to still be quantum," explained Barends. The very act of measurement locks the qubit into a single state and it then loses its superpositioning power, he said. Therefore, in something akin to a Sudoku puzzle, the parity values of data qubits in a qubit array are taken by adjacent measurement qubits, which essentially assess the information in the data qubits by measuring around them.

"So you pull out just enough information to detect errors, but not enough to peek under the hood and destroy the quantum-ness," said Kelly.

This development represents a meeting of the best in the science behind the physical and the theoretical in quantum computing -- the latest in qubit stabilization and advances in the algorithms behind the logic of quantum computing.

"It's a major milestone," said Barends. "Because it means that the ideas people have had for decades are actually doable in a real system."

The Martinis Group continues to refine its research to develop this important new tool. This particular quantum error correction has been proved to protect against the "bit-flip" error, however the researchers have their eye on correcting the complimentary error called a "phase-flip," as well as running the error correction cycles for longer periods to see what behaviors might emerge.

Martinis and the senior members of his research group have, since this research was performed, entered into a partnership with Google.

Media Contact

Sonia Fernandez
sonia.fernandez@ucsb.edu
805-893-4765

 @ucsantabarbara

http://www.ucsb.edu 

Sonia Fernandez | EurekAlert!

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>