Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software for high content drug research using live cells

23.05.2013
At the European Lab Automation Congress, held in Hamburg on June 6 and 7, Fraunhofer FIT demonstrates the new Zeta software for cell division analysis, which we developed for the Bayer Pharma AG.

In the quest for new cancer drugs, this software supports the full workflow from cell detection to visualization and exploration. As live cells are studied, the results have a higher biological significance and allow characterizing active agents more precisely.

Bayer HealthCare Pharmaceuticals uses FIT's Zeta software in their high content drug research, a technology for discovering active pharmaceutical ingredients. The Zeta software is used to determine the cell division rate of cancer cells in live cell imaging, which allows characterizing active pharmaceutical ingredients much more precisely. Zeta helps to determine cell cycle phases and to monitor the cells across their full life cycle. Substances that affect the division rate of cancerous cells and change it in the desired direction may turn out to be a first active ingredient candidate which will then be further characterized and optimized.

With the Zeta software it is possible to track individual cells across their full life cycle and to monitor several cell generations. A special visualization tool makes it easy to explore the data, to find individual differences and to determine the causes for different reactions of the cells. With single assays the temporal kinetics of an effect can be studied or the start or the maximum of a substance's effect can be determined. The substance – and the structures they affect – can thus be characterized more precisely.

Specific markers are needed to identify the different phases of the cell cycle. Checkpoints that mark the transition from one phase to the next must be made visible for an automated analysis. Here we rely on a cell line from ChromoTek GmbH based on the Chromobody® technology, which was specifically developed for live cell imaging in high content drug research.

The Zeta software offers a simple and intuitive way to analyze complex processes during cell division. An easy-to-use interface guides the user through the complete analysis workflow. User interaction is required at important steps, in order to keep the analysis flexible and to let the user tailor the workflow to changing experimental requirements. One distinctive feature of Zeta is its plug-in architecture, which allows very flexible adaptation of the software. At program start a configuration file is used to load only those modules that are needed for the image analysis at hand. This modular architecture makes it easy to adapt Zeta to new analysis workflows.

Contact:
Alex Deeg
pr@fit.fraunhofer.de
Phone +49 2241 14-2208

Alex Deeg | Fraunhofer-Institut
Further information:
http://www.fit.fraunhofer.de

Further reports about: cancer drug cell cycle cell division life cycle live cell imaging

More articles from Information Technology:

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht A burst of ”synchronous” light
08.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

NIH scientists combine technologies to view the retina in unprecedented detail

14.11.2018 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>