Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartwatches can now track your finger in mid-air using sonar

16.03.2016

As mobile and wearable devices such as smartwatches grow smaller, it gets tougher for people to interact with screens the size of a matchbook.

That could change with a new sonar technology developed by University of Washington computer scientists and electrical engineers that allows you to interact with mobile devices by writing or gesturing on any nearby surface -- a tabletop, a sheet of paper or even in mid-air.


University of Washington computer science and engineering and electrical engineering researchers demonstrate FingerIO, a new technology from CSE's Networks and Mobile Systems Lab that employs sonar to enable users to interact with their smartphones and smartwatches by gesturing or writing on any nearby surface.

Credit: University of Washington Department of Computer Science & Engineering

FingerIO tracks fine-grained finger movements by turning a smartphone or smartwatch into an active sonar system using the device's own microphones and speakers.

Because sound waves travel through fabric and do not require a line of sight, users can even interact with a phone inside a front pocket or a smartwatch hidden under a sweater sleeve.

In a paper to be presented in May at the Association for Computing Machinery's CHI 2016 conference in San Jose, California, the UW team demonstrates that FingerIO can accurately track two-dimensional finger movements to within 8mm, which is sufficiently accurate to interact with today's mobile devices. The work was recognized with an honorable mention award by the conference.

"You can't type very easily onto a smartwatch display, so we wanted to transform a desk or any area around a device into an input surface," said lead author Rajalakshmi Nandakumar, a UW doctoral student in computer science and engineering. "I don't need to instrument my fingers with any other sensors -- I just use my finger to write something on a desk or any other surface and the device can track it with high resolution."

Using FingerIO, one could use the flick of a finger to turn up the volume, press a button, or scroll through menus on a smartphone without touching it, or even write a search command or text in the air rather than typing on a tiny screen.

FingerIO turns a smartwatch or smartphone into a sonar system using the device's own speaker to emit an inaudible sound wave. That signal bounces off the finger, and those "echoes" are recorded by the device's microphones and used to calculate the finger's location in space.

Using sound waves to track finger motion offers several advantages over cameras -- which don't work without line-of-sight when the device is hidden by fabric or another obstructions -- and other technologies like radar that require both custom sensor hardware and greater computing power, said senior author and UW assistant professor of computer science and engineering Shyam Gollakota.

"Acoustic signals are great -- because sound waves travel much slower than the radio waves used in radar, you don't need as much processing bandwidth so everything is simpler," said Gollakota, who directs the UW's Networks and Mobile Systems Lab. "And from a cost perspective, almost every device has a speaker and microphones so you can achieve this without any special hardware."

But sonar echoes are weak and typically not accurate enough to track finger motion at a high resolution. Errors of a few centimeters make it impossible to differentiate between writing individual letters or subtle hand gestures.

The UW researchers employed a type of signal typically used in wireless communication -- called Orthogonal Frequency Division Multiplexing -- and demonstrated that it can be used to achieve high-resolution finger tracking using sound. Their algorithms leverage the properties of OFDM signals to track phase changes in the echoes and correct for any errors in the finger location to achieve sub-centimeter finger tracking.

To test their approach, the researchers created a FingerIO prototype app for Android devices and downloaded it to an off-the-shelf Samsung Galaxy S4 smartphone and a smartwatch customized with two microphones, which are needed to track finger motion in two dimensions. Today's smartwatches typically only have one, which can be used to track a finger in one dimension.

The researchers asked testers to draw shapes such as stars, squiggles or figure 8s on a touchpad next to a smartphone or smartwatch running FingerIO. Then they compared the touchpad tracings to the shapes created by FingerIO's tracking.

The average difference between the drawings and the FingerIO tracings was 0.8 centimeters for the smartphone and 1.2 centimeters for the smartwatch.

"Given that your finger is already a centimeter thick, that's sufficient to accurately interact with the devices," said co-author and electrical engineering graduate student Vikram Iyer.

Next steps for the research team include demonstrating how FingerIO can be used to track multiple fingers moving at the same time, and extending its tracking abilities into three dimensions by adding additional microphones to the devices.

###

The research was funded by the National Science Foundation and Google.

Co-authors include Microsoft Research principal researcher Desney Tan.

FROM: Jennifer Langston
University of Washington
206-543-2580
jlangst@uw.edu

For more information, contact fingerio@cs.washington.edu.

http://www.washington.edu/news/ 

Jennifer Langston | EurekAlert!

Further reports about: computer science finger motion microphones mid-air mobile devices sonar sound waves waves

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>