Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smartphone case offers blood glucose monitoring on the go

08.12.2017

Engineers at the University of California San Diego have developed a smartphone case and app that could make it easier for patients to record and track their blood glucose readings, whether they're at home or on the go.

Currently, checking blood sugar levels can be a hassle for people with diabetes, especially when they have to pack their glucose monitoring kits around with them every time they leave the house.


This is a GPhone: a portable glucose sensing system integrated onto a smartphone.

Credit: David Baillot/UC San Diego Jacobs School of Engineering

"Integrating blood glucose sensing into a smartphone would eliminate the need for patients to carry a separate device," said Patrick Mercier, a professor of electrical and computer engineering at UC San Diego. "An added benefit is the ability to autonomously store, process and send blood glucose readings from the phone to a care provider or cloud service."

The device, called GPhone, is a new proof-of-concept portable glucose sensing system developed by Mercier, nanoengineering professor Joseph Wang, and their colleagues at the UC San Diego Jacobs School of Engineering. Wang and Mercier are the director and co-director, respectively, of the Center for Wearable Sensors at UC San Diego. Their team published the work in Biosensors and Bioelectronics.

GPhone has two main parts. One is a slim, 3D printed case that fits over a smartphone and has a permanent, reusable sensor on one corner. The second part consists of small, one-time use, enzyme-packed pellets that magnetically attach to the sensor. The pellets are housed inside a 3D printed stylus attached to the side of the smartphone case.

To run a test, the user would first take the stylus and dispense a pellet onto the sensor--this step activates the sensor. The user would then drop a blood sample on top. The sensor measures the blood glucose concentration, then wirelessly transmits the data via Bluetooth to a custom-designed Android app that displays the numbers on the smartphone screen. The test takes about 20 seconds. Afterwards, the used pellet is discarded, deactivating the sensor until the next test. The stylus holds enough pellets for 30 tests before it needs to be refilled. A printed circuit board enables the whole system to run off a smartphone battery.

The pellets contain an enzyme called glucose oxidase that reacts with glucose. This reaction generates an electrical signal that can be measured by the sensor's electrodes. The greater the signal, the higher the glucose concentration. The team tested the system on different solutions of known glucose concentrations. The results were accurate throughout multiple tests.

A key innovation in this design is the reusable sensor. In previous glucose sensors developed by the team, the enzymes were permanently built in on top of the electrodes. The problem was that the enzymes wore out after several uses. The sensor would no longer work and had to be completely replaced. Keeping the enzymes in separate pellets resolved this issue.

"This system is versatile and can be easily modified to detect other substances for use in healthcare, environmental and defense applications," Wang said. The system stores a considerable amount of data so that users can track their readings over long time periods. However, there is a trade-off in price. While the reusable glucose sensor and 3D printed parts are inexpensive, refill pellets may be slightly more costly than test strips in today's glucose monitoring kits.

The team envisions one day integrating glucose sensing directly into a smartphone rather than a case. The work is currently at the proof-of-concept stage. Some next steps include testing on actual blood samples and minimizing sample volumes--the current prototype uses at least a dozen drops of sample per test, so researchers aim to cut that down to an amount that's normally extracted from a finger prick. They also plan to include a function in the app that sends phone alerts reminding users to check their blood sugar.

###

Paper title: "Re-usable electrochemical glucose sensors integrated into a smartphone platform." Authors of the study are Amay J. Bandodkar*, Somayeh Imani*, Rogelio Nuñez-Flores*, Rajan Kumar, Chiyi Wang, A.M. Vinu Mohan, Joseph Wang and Patrick P. Mercier.

*These authors contributed equally to this work.

This work was supported in part by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health (award no. R21EB019698).

Media Contact

Liezel Labios
llabios@ucsd.edu
858-246-1124

 @UCSanDiego

http://www.ucsd.edu 

Liezel Labios | EurekAlert!

More articles from Information Technology:

nachricht New models and better data for macromolecular structure determination
23.07.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Toward molecular computers: First measurement of single-molecule heat transfer
22.07.2019 | University of Michigan

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MOF@SAW: Nanoquakes and molecular sponges for weighing and separating tiny masses

Augsburg chemists and physicists report how they have succeeded in the extremely difficult separation of hydrogen and deuterium in a gas mixture.

Thanks to the Surface Acoustic Wave (SAW) technology developed here and already widely used, the University of Augsburg is internationally recognized as the...

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Hidden dynamics detected in neuronal networks

23.07.2019 | Life Sciences

Towards a light driven molecular assembler

23.07.2019 | Life Sciences

A torque on conventional magnetic wisdom

23.07.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>