Small, fast and not so demanding: breakthrough in memory technologies …

Memory devices like disk drives, flash drives and RAM play an important role in our lives. They are an essential component of our computers, phones, electronic appliances and cars. Yet current memory devices have significant drawbacks: dynamic RAM memory has to be refreshed periodically, static RAM data is lost when the power is off, flash memory lacks speed, and all existing memory technologies are challenged when it comes to miniaturization.

Increasingly, memory devices are a bottleneck limiting performance. In order to achieve a substantial improvement in computation speed, scientists are racing to develop smaller and denser memory devices that operate with high speed and low power consumption.

Prof. Yossi Paltiel and research student Oren Ben-Dor at the Hebrew University of Jerusalem’s Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, together with researchers from the Weizmann Institute of Science, have developed a simple magnetization progress that, by eliminating the need for permanent magnets in memory devices, opens the door to many technological applications.

(Published in Nature Communications, the research paper, A chiral-based magnetic memory device without a permanent magnet, was written by Prof. Yossi Paltiel, Oren Ben Dor and Shira Yochelis at the Department of Applied Physics, Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem; and Shinto P. Mathew and Ron Naaman at the Department of Chemical Physics, Weizmann Institute of Science.)

The research deals with the flow properties of electron charge carriers in memory devices. According to quantum mechanics, in addition to their electrical charge, electrons also have a degree of internal freedom called spin, which gives them their magnetic properties. The new technique, called magnetless spin memory (MSM), drives a current through chiral material (a kind of abundantly available organic molecule) and selectively transfers electrons to magnetize nano magnetic layers or nano particles. With this technique, the researchers showed it is possible to create a magnetic-based memory device that does not require a permanent magnet, and which could allow for the miniaturization of memory bits down to a single nanoparticle.

The potential benefits of magnetless spin memory are many. The technology has the potential to overcome the limitations of other magnetic-based memory technologies, and could make it possible to create inexpensive, high-density universal memory-on-chip devices that require much less power than existing technologies. Compatible with integrated circuit manufacturing techniques, it could allow for inexpensive, high density universal memory-on-chip production.

According to the Hebrew University's Prof. Paltiel, “Now that proof-of-concept devices have been designed and tested, magnetless spin memory has the potential to become the basis of a whole new generation of faster, smaller and less expensive memory technologies.”

The technology transfer companies of the Hebrew University (Yissum) and the Weizmann Institute of Science (Yeda) are working to promote the realization of this technology, by licensing its use and raising funds for further development and commercialization. With many possible applications, it has already attracted the attention of start-up funds.

The Hebrew University’s Center of Nanoscience and Nanotechnology helped with device fabrication and advice. Prof. Paltiel acknowledges the Yessumit internal grant from the Hebrew University, and Ron Naaman and Shinto P. Mathew acknowledge the support of the Minerva Foundation.

About The Hebrew University of Jerusalem’s Harvey M. Krueger Family Center for Nanoscience and Nanotechnology

Established in 2001, the Center for Nanoscience and Nanotechnology deals with diverse fields of nanoscience such as new materials, molecular and nano-electronics, nano-electrooptics, nanomedicine and nano-biology. The research will enable technological development of new transistors, memory elements, sensors and biosensors, renewable energy sources, directed drug delivery schemes, and more. Operating within the Faculty of Science, the Center aims to create an enabling environment for interdisciplinary research, education, technological development and commercialization of scientific achievements in the field of Nanoscience and Nanotechnology, in order to participate as a leading force in the world nanotechnology revolution and contribute to Israeli academia, industry and society. The Center has almost 70 member groups and is expected to expand further through recruitment of promising young faculty members. Online at http://nanoscience.huji.ac.il.

For more information:

Dov Smith
Hebrew University Foreign Press Liaison
02-5882844 / 054-8820860 (+972-54-8820860)
dovs@savion.huji.ac.il

Media Contact

Dov Smith Hebrew University

More Information:

http://www.huji.ac.il

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors