Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silicon helps light go through the right channels

28.03.2014

Improved design of lasers on optoelectronic chips will advance optical communications

When it comes to data transmission, light is superior to electronics. An ability to transmit data in parallel by utilizing multiple light wavelengths allows optical fibers to carry more information than electrical cables.


Current computer technology uses electronics, but a new laser design based on a thin-layered silicon chip may help increase data processing capabilities.

© Olga Miltsova/Hemera/Thinkstock

Computers are currently based on electronics, but they would benefit from employing optical signals. However, for this to become a reality, it needs to be implemented on a small scale and result in low power consumption.

Now, Vivek Krishnamurthy from the A*STAR Data Storage Institute in Singapore and his colleagues have designed a laser on a microelectronic chip that has a lower power consumption and a higher efficiency1.

“By developing lasers on silicon, we can combine the electronic data processing capability of the microelectronic chip with the high energy efficiency of optical communications over distances ranging from a few micrometers within a chip to hundreds of meters in data centers,” says Krishnamurthy.

The processing speed of the microelectronic chip is limited by its power consumption; most of the power is consumed by the connecting electrical wires and links. Optical links, on the other hand, consume practically no energy but are limited by the power consumption of the light source, which is often a laser.

For optical links to be feasible on a small scale, the electrical power consumption of lasers must be reduced, yet still be able to generate sufficient optical energy for transmission.

Lasers cannot be made from silicon as it is a poor light emitter. Instead, lasers are fabricated by bonding an active material based on indium phosphide — a good light emitter — to a thin silicon film. However, because silicon is better for carrying optical signals, the light from the laser needs to be routed through the silicon chip via optical channels. This requires fabricating optical channels in silicon outside the laser region.

Generating light efficiently in the active medium and efficiently routing it via the silicon layer simultaneously reduces the electrical current required and increases the power generated. Calculations show that this silicon-based design will have a three to four times higher light generation efficiency than competing schemes.

This high efficiency makes the silicon-based laser design promising for making optical chips, which, says Krishnamurthy, is the next step for the project team. “We have begun the experimental demonstration of the laser,” he says. “Our plan is to integrate this laser onto our silicon platform and develop a fully functional photonic system for applications, for example, in data communications and storage.”

The A*STAR-affiliated researchers contributing to this research are from the Data Storage Institute

Associated links

Journal information

Krishnamurthy, V., Wang, Q., Pu, J., Loh, T.-H. & Ho, S. T. Optical design of distributed feedback lasers-on-thin-film-silicon. IEEE Photonics Technology Letters 25, 944–947 (2013).

A*STAR Research | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Optical Photonics Science Silicon Storage lasers processing signals

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How Humans and Machines Navigate Complex Situations

19.11.2018 | Science Education

Finding plastic litter from afar

19.11.2018 | Ecology, The Environment and Conservation

Channels for the Supply of Energy

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>