Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shaping nanoparticles for improved quantum information technology

15.10.2019

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National Laboratory, have contributed to a recently published Nature Communications paper that reports the cause behind a key quantum property of donut-like nanoparticles called "semiconductor quantum rings." 


This is an artistic rendering of semiconductor quantum rings being illuminated by a laser and emitting single photons.

Credit: Argonne National Laboratory

This property may find application in quantum information storage, communication, and computing in future technologies.

"If you illuminate a two-dimensional photon emitter with a laser, you expect them to emit light along two axes, but what you expect is not necessarily what you get. To our surprise, these two-dimensional rings can emit light along one axis." -- Xuedan Ma, assistant scientist, Center for Nanoscale Materials

In this project, the CNM researchers collaborated with colleagues from the University of Chicago, Ludwig Maximilian University of Munich, University of Ottawa and National Research Council in Canada.

The team assembled circular rings made out of cadmium selenide, a semiconductor that lends itself to growing donut-shaped nanoparticles. These quantum rings are two-dimensional structures -- crystalline materials composed of a few layers of atoms. The advantage of semiconductors is that when researchers excite them with a laser, they emit photons.

"If you illuminate a two-dimensional photon emitter with a laser, you expect them to emit light along two axes," said Xuedan Ma, assistant scientist at CNM. "But what you expect is not necessarily what you get. To our surprise, these two-dimensional rings can emit light along one axis."

The team observed this effect when breaking the perfect rotational symmetry of the donut shape, causing them to be slightly elongated. "By this symmetry breaking," says Ma, "we can change the direction of light emission. We can thus control how photons come out of the donut and achieve coherent directional control."

Because the photons in the light emits from these rings along a single direction, rather than spreading out in all directions, researchers can tune this emission to effectively collect single photons. With this control, researchers can integrate topology information into the photons, which can then be used as messengers for carrying quantum information. It may even be possible to exploit these encoded photons for quantum networking and computation.

"If we can gain even greater control over the fabrication process, we could make nanoparticles with different shapes such as a clover with multiple holes or a rectangle with a hole in the center," noted Matthew Otten, a Maria Goeppert Mayer Fellow at Argonne's CNM. "Then, we might be able to encode more types of quantum information or more information into the nanoparticles."

"I should add that geometry is not the only factor in causing this quantum effect. The atomistic structure of the material also counts, as is often the case in nanoscale materials," said Ma.

A paper based on the study, "Uniaxial transition dipole moments in semiconductor quantum rings caused by broken rotational symmetry," appeared recently in Nature Communications. In addition to Ma and Otten, authors include Nicolai F. Hartmann, Igor Fedin, Dmitri Talapin, Moritz Cygorek, Pawel Hawrylak, Marek Korkusinski, Stephen Gray and Achim Hartschuh.

###

This work was supported by the DOE Office of Science.

About Argonne's Center for Nanoscale Materials
The Center for Nanoscale Materials is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit https://science.osti.gov/User-Facilities/User-Facilities-at-a-Glance.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

Media Contact

Diana Anderson
ddanderson@anl.gov
630-252-4593

 @argonne

http://www.anl.gov 

Diana Anderson | EurekAlert!
Further information:
https://www.anl.gov/article/shaping-nanoparticles-for-improved-quantum-information-technology
http://dx.doi.org/10.1038/s41467-019-11225-6

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Scientists first to develop rapid cell division in marine sponges

21.11.2019 | Life Sciences

First detection of gamma-ray burst afterglow in very-high-energy gamma light

21.11.2019 | Physics and Astronomy

Research team discovers three supermassive black holes at the core of one galaxy

21.11.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>