Shape detection at fault

A new algorithm that generates smooth 3-D images of underground fault locations makes it easier to find petroleum resources. © 2016 KAUST

The deep cracking faults that lie within the Earth’s crust are significant geologic surfaces for oil exploration and earthquake prediction. A team from KAUST developed an algorithm that smoothly detects faults and other three-dimensional (3-D) surfaces with high computational efficiency even amid noisy and cluttered data sets [1].

Identifying objects in images using geometric curves is critical to many computer vision applications. One method uses fast marching algorithms that track how interfaces evolve with time from an initial seed point. This technique uses efficient computational routines to expand the seed curve step-by-step until mathematical conditions corresponding to a boundary are met—the steep slope of a cliff, for instance.

Requiring software users to define probable surface boundaries, however, makes it tricky to use fast marching algorithms for complex 3-D problems.

“It’s a challenge to extract a surface from an image volume when the boundary is non-empty and unknown,” explained Ganesh Sundaramoorthi from the University’s Computer, Electrical and Mathematical Science and Engineering Division. “Until now, no algorithm could handle this task.”

Sundaramoorthi and colleague Marei Algarni recently developed software known as SurfCut to solve these issues. The pair realized that for two-dimensional (2-D) objects, a small curve from a seed point can trace out the surface and automatically stop along the boundary. However, performing the equivalent operations in 3-D required a new approach based on topology, or the mathematical descriptions of features that are preserved under deformation.

The new analysis program uses fast marching methods to compute the shortest paths between a seed point and a moving interface. Ridge sets are then computed by retracting the interface until rigid topological features emerge. These features are likely to lie on the surface, and the team’s algorithm extracts them to efficiently determine 3-D surfaces.

“Our idea embeds 3-D curves on the surface as ridges of a moving front, and we watch the curves evolve as the front propagates,” noted Sundaramoorthi. “Ridge sets are difficult to extract from realistic images, which are discrete and noisy, but our algorithm makes this operation feasible.”

To demonstrate the usefulness of SurfCut, the researchers analyzed a series of seismic images and generated new underground 3-D maps with stunning clarity. “Understanding complex fault surfaces can be hard, even for expert geologists,” Sundaramoorthi said. “Our technique allows them to see structures that are impossible to view using 2-D slices, and is really robust against data imperfections. This could directly impact the oil industry.”

Associated links

Journal information

[1] Algarni, M. & Sundaramoorthi, G. SurfCut: Free-boundary surface extraction. European Conference on Computer Vision (ECCV), Springer, October 2016, in press.

Media Contact

Michelle D'Antoni Research SEA

More Information:

http://www.researchsea.com

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Peptides on Interstellar Ice

A research team led by Dr Serge Krasnokutski from the Astrophysics Laboratory at the Max Planck Institute for Astronomy at the University of Jena had already demonstrated that simple peptides…

A new look at the consequences of light pollution

GAME 2024 begins its experiments in eight countries. Can artificial light at night harm marine algae and impair their important functions for coastal ecosystems? This year’s project of the training…

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

Partners & Sponsors