Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor cable monitors fences of all kinds and can even detect low-level drone fly-bys

25.03.2015

Fenced-in areas, such as airports, nuclear power stations, industrial sites, or private plots of land, can now be monitored thanks to novel sensor technology that has been developed by a team of experimental physicists, led by Professor Uwe Hartmann at Saarland University. The sensors respond immediately as soon as someone tries to climb over or cut through the fence, providing information on the precise location of the security breach. They are even able to detect a low-flying drone passing overhead. The thin cable containing the magnetic field sensors can be easily installed on perimeter fences of all kinds.

The research team is currently working on developing the system so that it can recognize the cause of a disturbance and can automatically identify false alarms triggered by wind or animals. The team is collaborating with industrial partners to produce a cable suitable for mass production. The technology will be shown at HANNOVER MESSE from April 13th to April 17th. The team will be exhibiting at the Saarland Research and Innovation Stand in Hall 2, Stand B 46.


A number of fences on the Saarbrücken campus are presently undergoing long-term monitoring. From left: Professor Uwe Hartmann and the scientists Dr. Uwe Schmitt and Dr. Haibin Gao.

Foto: Oliver Dietze

If someone tries to tamper with a fence, or if they try to climb over it or cut the links with bolt cutters, they will, unavoidably, cause a vibrational disturbance. The movement of the metal fence as it swings back and forth, the motion of the metal cutters or even the trespasser’s belt will all influence the Earth’s magnetic field. These changes are being exploited by a team of experimental physicists at Saarland University for a new type of surveillance technology.

‘Our magnetometers (magnetic field sensors) are highly sensitive and can reliably measure even the smallest of changes in the ambient magnetic field,’ explains Professor Uwe Hartmann. The sensors are even able to detect when a drone flies close by overhead – provided, of course, that the drone contains metal. ‘The sensors can detect disturbances in the surrounding magnetic field, including the magnetic field above them, with a range extending several metres,’ adds research assistant Haibin Gao who is working on the sensor technology as part of Hartmann’s team.

The cable, which contains the linearly arranged sensors, has a diameter comparable to a standard electrical cable and enables the remote monitoring of miles of perimeter fencing. ‘The cable can be attached to the fence, built into it or even buried beneath it. We are currently working with a number of companies to reduce the size of the system and, most importantly, to lower the cost of producing the sensors to a level where large-volume production becomes feasible,’ says Uwe Hartmann.

The contactless sensors are not subject to wear and have a low power consumption. They are unaffected by rain or fog. ‘The sensors function independently of the weather and this gives them a significant advantage over other surveillance techniques, such as cameras, where moisture is often a problem. And the measurements are unproblematic from the point of view of privacy. The sensors simply report that a vibrational disturbance was caused by a human agent at a specific location. No other information is gathered,’ explains Professor Hartmann. A number of different types of sensor systems developed by his research group have already been deployed in traffic management systems, for example in airports.

The miniature sensors in the cable are networked and any change that they register is immediately transmitted to the analyser unit. The location of the disturbance can be specified with high precision, which is of particular value when monitoring very large areas. Scientists in Hartmann’s team are currently working on refining the technology so that the sensors are able to unambiguously assign a particular type of vibration or a particular change in the measured magnetic field to a specific type of disturbance.

‘The aim is to develop a system that can automatically identify false alarms triggered by wind, animals or some other harmless cause,’ explains Hartmann. To do this the researchers are currently simulating different types of disturbances. A number of fences on the Saarbrücken campus are presently undergoing long-term monitoring to determine how the system is affected by such factors as wind. This field data is used by the physicists to model typical disturbance scenarios and to train the system with the aid of complex mathematical methods.

The results are then used to program the sensors and the analyser unit. The new information enables the analyser to automatically attribute a disturbance to a particular cause. If the cause is identified as human, an alarm is triggered; if the disturbance was due to animal rubbing up against the fence, no alarm is set off.

The Federal Ministry of Education and Research (BMBF) has provided a total of more than one million Euro in research funding, of which more than € 250,000 was allocated to Saarland University. Industrial project partners are Sensitec GmbH, based in Mainz and Lahnau (http://www.sensitec.com) and GBA-Panek GmbH whose headquarters are in Kahla, south of Jena (http://www.gba-panek.de).

Contact:
Prof. Dr. Uwe Hartmann, Nanostructure Research and Nanotechnology Group, Department of Experimental Physics, Saarland University, Germany,
Tel.: +49 (0)681 302-3799 or -3798; E-mail: u.hartmann@mx.uni-saarland.de
Dr. Haibin Gao: +49 (0)681 302-3654; h.gao@mx.uni-saarland.de
Dr. Uwe Schmitt: +49 (0)681 302-2957; uwe.schmitt@mx.uni-saarland.de

During HANNOVER MESSE 2015, the Saarland Research and Innovation Stand can be contacted at Tel.: +49 (0)681 302-68500.

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-64091 or -2601).

Background:
The Saarland Research and Innovation Stand is organized by Saarland University's Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University. http://www.uni-saarland.de/kwt

Claudia Ehrlich | Universität des Saarlandes

Further reports about: Sensor disturbance drone false alarms magnetic field vibrational disturbance

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>