Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving lots of computing capacity with a new algorithm

29.10.2014

The control of modern infrastructure such as intelligent power grids needs lots of computing capacity. Scientists of the Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the University of Luxembourg have developed an algorithm that might revolutionise these processes.

With their new software the SnT researchers are able to forego the use of considerable amounts of computing capacity, enabling what they call micro mining. Their achievements, which the team headed by Prof. Yves Le Traon published in the International Conference on Software Engineering and Knowledge Engineering, earned the scientists a Best Paper Award during this event.

Modern infrastructure – from the telephone network and alarm systems to power supply systems – is controlled by computer programmes. This intelligent software continuously monitors the state of the equipment, adjusts system parameters if they deviate, or generates error messages. To monitor the equipment, the software compares its current state with its past state by continuously measuring the status quo, accumulating this data, and analysing it.

That uses a considerable portion of available computing capacity. Thanks to their new algorithm, the SnT researchers’ software no longer has to continuously analyse the state of the system to be monitored the way established techniques do. In carrying out the analysis of the system, it instead seamlessly moves between state values that were measured at different points in time.

“In particular the operation of distributed installations such as power grids of today will benefit from our programme”, says Dr. François Fouquet, managing the project at SnT with Dr. Jacques Klein: “In these smart grids, as they are referred to, many smaller individual components like solar cells, rectifiers, and other components must be monitored and controlled. For the investment and operating costs to remain economically acceptable, they have to be equipped with small, simple control units.” These kinds of small embedded microprocessors cannot continuously measure the system states, store the data, and evaluate it in real-time.

Thomas Hartmann, who is completing his doctoral dissertation as part of the project, explains the new approach by SnT: “Our software stores only the changes of the system state at specific points in time. In order to be able to correctly evaluate the current situation in the network, our algorithm automatically identifies suitable measure-ment values from the past. It therefore pulls the correct measurement values from the archive to carry out a correct analysis of the current state – thereby essentially jumping back and forth in time. That translates into an enormous reduction in computing overhead and thus an increase in computing efficiency for the same standard of security and dependability.”

The researchers next want to field test their process. As in the first part of the project, they are collaborating with Creos, the Luxembourg power grid operator and participant in the SnT Partnership Program “Thanks to this collaboration, our research has always remained in accord with corporate realities", says Prof. Yves Le Traon: “We are hoping our fundamental development work will trigger a jump in the technology of smart grids.”

About SnT: Launched in 2009 by the University of Luxembourg, SnT is an internationally recognised leading research institute that together with external partners establishes Luxembourg as a European centre of excellence and innovation for secure, reliable, and trustworthy information and communications technologies (ICT). In order to create a great impact, SnT follows an interdisciplinary research approach, taking not only technical aspects into account but also addressing business, human, and regulatory issues. SnT provides a valuable platform for interaction and collaboration between university researchers and external partners.

Weitere Informationen:

http://www.uni.lu/snt - Website of SnT at the University of Luxembourg

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>