Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving lots of computing capacity with a new algorithm

29.10.2014

The control of modern infrastructure such as intelligent power grids needs lots of computing capacity. Scientists of the Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the University of Luxembourg have developed an algorithm that might revolutionise these processes.

With their new software the SnT researchers are able to forego the use of considerable amounts of computing capacity, enabling what they call micro mining. Their achievements, which the team headed by Prof. Yves Le Traon published in the International Conference on Software Engineering and Knowledge Engineering, earned the scientists a Best Paper Award during this event.

Modern infrastructure – from the telephone network and alarm systems to power supply systems – is controlled by computer programmes. This intelligent software continuously monitors the state of the equipment, adjusts system parameters if they deviate, or generates error messages. To monitor the equipment, the software compares its current state with its past state by continuously measuring the status quo, accumulating this data, and analysing it.

That uses a considerable portion of available computing capacity. Thanks to their new algorithm, the SnT researchers’ software no longer has to continuously analyse the state of the system to be monitored the way established techniques do. In carrying out the analysis of the system, it instead seamlessly moves between state values that were measured at different points in time.

“In particular the operation of distributed installations such as power grids of today will benefit from our programme”, says Dr. François Fouquet, managing the project at SnT with Dr. Jacques Klein: “In these smart grids, as they are referred to, many smaller individual components like solar cells, rectifiers, and other components must be monitored and controlled. For the investment and operating costs to remain economically acceptable, they have to be equipped with small, simple control units.” These kinds of small embedded microprocessors cannot continuously measure the system states, store the data, and evaluate it in real-time.

Thomas Hartmann, who is completing his doctoral dissertation as part of the project, explains the new approach by SnT: “Our software stores only the changes of the system state at specific points in time. In order to be able to correctly evaluate the current situation in the network, our algorithm automatically identifies suitable measure-ment values from the past. It therefore pulls the correct measurement values from the archive to carry out a correct analysis of the current state – thereby essentially jumping back and forth in time. That translates into an enormous reduction in computing overhead and thus an increase in computing efficiency for the same standard of security and dependability.”

The researchers next want to field test their process. As in the first part of the project, they are collaborating with Creos, the Luxembourg power grid operator and participant in the SnT Partnership Program “Thanks to this collaboration, our research has always remained in accord with corporate realities", says Prof. Yves Le Traon: “We are hoping our fundamental development work will trigger a jump in the technology of smart grids.”

About SnT: Launched in 2009 by the University of Luxembourg, SnT is an internationally recognised leading research institute that together with external partners establishes Luxembourg as a European centre of excellence and innovation for secure, reliable, and trustworthy information and communications technologies (ICT). In order to create a great impact, SnT follows an interdisciplinary research approach, taking not only technical aspects into account but also addressing business, human, and regulatory issues. SnT provides a valuable platform for interaction and collaboration between university researchers and external partners.

Weitere Informationen:

http://www.uni.lu/snt - Website of SnT at the University of Luxembourg

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Advanced AI boosts clinical analysis of eye images
19.09.2019 | Universitätsspital Bern

nachricht Quantum computers by AQT and University of Innsbruck leverage Cirq for quantum algorithm development
16.09.2019 | Universität Innsbruck

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

Quality control in immune communication: Chaperones detect immature signaling molecules in the immune system

20.09.2019 | Life Sciences

Moderately Common Plants Show Highest Relative Losses

20.09.2019 | Life Sciences

The Fluid Fingerprint of Hurricanes

20.09.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>