Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Safe2Land - helps with engine-out and pilot incapacitation


Researchers at the FernUniversität have developed an emergency landing system that helps pilots “gliding” to a landing site. An aviation magazine recognized this innovation. If the aircraft engine fails completely, the emergency landing assistance system can provide effective support for pilots. It determines a landing site that can be reached in gliding flight and helps to steer the non-powered machine down to the ground. The "Emergency Landing Assistant" (ELA) and the "Emergency Landing Field Identification" (ELFI) have now been extended by an aircraft control component to "Safe2Land" and can now automatically land a machine even if the crew fails.

A German aviation magazine honored the team of Wolfram Schiffmann, Professor of Computer Architecture at the FernUniversität in Hagen, for its emergency landing assistant ELA with its “Innovation Award”.

Safe2Land is already available on a Tablet PC

FernUniversität in Hagen

About 39.7 percent of the participating readers of the “aerokurier” voted in the “Special Aviation Award” for the “Engine-out Emergency Landing Assistant” developed in their institute - considerably more than for the second-placed development.

The editorial team chose innovations in a total of eight categories, which they believe have the potential to shape the future of general aviation.

"Whether due to a technical problem, a bird strike or lack of fuel: aircraft engines can always fail!" says Prof. Dr. Wolfram Schiffmann with great emphasis. The computer science professor at the FernUniversität is a passionated pilot and flight instructor in his spare time.

If the aircraft engine fails completely, the emergency landing assistance system developed in its computer architecture department can provide effective support for pilots. It determines a landing site that can be reached in gliding flight and helps to steer the non-powered machine down to the ground.

The "Emergency Landing Assistant" (ELA) and the "Emergency Landing Field Identification" (ELFI) have now been extended by an aircraft control component to "Safe2Land" and can now automatically land a machine even if the crew fails.

Diverse applications for „Safe2Land"

The researchers at the FernUniversität developed new methods to use geodata to automatically identifying emergency landing fields and to calculate glide paths to there very efficiently. For example, a database with more than 100,000 emergency landing fields was created for North Rhine Westphalia using artificial neural networks.

With a new approach to take the wind situation into account, the glide path calculation could be accelerated by a factor of approx. 1,000,000, so that even on a standard tablet PC only about a millionth of a second is needed per glide path.

In this way, all possible glide paths can be permanently determined and the best one selected in real time during flight. "Safe2Land" was successfully tested in a research flight simulator developed by the department itself as well as in real aircrafts. There are various applications for future aircrafts with single pilot operation (SPO), air taxis and unmanned air vehicles (UAV).

Glide to the runway without thrust

Not only single-engine airplanes are at risk of an engine failures, but even passenger planes (where the trend is moving away from four-engine to more economical twin-engine types). In such a case, the pilot must fly his non-powered machine like a glider to a suitable runway or emergency landing field and flare out in a controlled manner. Such a foolhardy but no alternative maneuver made Chesley "Sully" Sullenberger famous in 2009 when he steered his Airbus onto the Hudson River in New York with all engines out.

Such situations are pure stress for pilots. They have to make and implement exactly the right decisions within a very short time, often with insufficient information. However, many general conditions and influencing factors can often only be estimated.

The decision for one of several possible landing sites is extremely difficult. Prof. Dr. Wolfram Schiffmann: "It is often definite, there is only one attempt!" In addition, motorized aircrafts are not designed for gliding, their gliding characteristics differ significantly in turns and straight flight. In the case of slow-flying aircraft in particular, the current - often changing - wind situation must also be taken into account.

Find the optimal glide path to the landing area

The crew can be supported by rapid route planning using ELA. The emergency landing assistant calculates four glide paths for each runway close by and helps the pilots to find the optimal glide path to the landing area. If no suitable airport can be reached, a database with emergency landing sites can be accessed, which have been identified by means of ELFI.

A landing field should be within gliding reach and aligned opposite to the wind direction. In addition, it must be large enough for the aircraft, both in the direction of landing and across it. It should also be noted that the runway has no significant inclination in the longitudinal and transverse directions, which is unsuitable for the aircraft.

The pilots must strictly adhere to the computed glide path down to the emergency landing site so that the aircraft can touch down in the correct altitude, heading and landing speed at the beginning of the landing field. However, winds can have a difficult impact on the direction and speed of the aircraft, and gusts can even cause the aircraft to "stand across to the wind".

However, ELA is able to permanently recalculate the glide path: "Our method models any wind configuration and calculates the optimized glide path in real time even in complex wind scenarios," explains Schiffmann. "Previous methods based on cycloid curves, so-called trochoids, can only take into account a constant wind component.“

ELA obtains the geodata of the runways from a database created by ELFI. This emergency landing site finder uses highly accurate altitude data measured with LiDAR technology. LiDAR stands for "Light Detection and Ranging", a proven measurement technology that works with laser beams - similar to a radar.

ELFI evaluates the three-dimensional surface model (digital surface model) and determines emergency landing areas that are suitable for the landing of the aircraft without thrust. In addition, the emergency landing fields are checked with satellite images using artificial neural networks and digital road maps, so that e.g. trenches in fields, roads or water surfaces cannot be classified as landing opportunities.

Highly complex calculations

"For our highly complex calculations, we used computer systems with multi-core processors working in parallel, which later combine their partial results," explains Wolfram Schiffmann. “Although we only sampled the altitude data for a limited number of landing directions and each checked whether the landing sites were suitable in terms of size and inclinations, huge amounts of data were generated. When determining emergency landing fields in the Hagen area alone, for example, gigabytes had to be evaluated.“

"Safe2Land" successfully tested with Autopilot

A FernUni’s student has integrated "Safe2Land" into an unmanned model airplane with a wingspan of 1.4 meters and a take-off weight of 1.5 kilograms in his master's thesis in the computer architecture institute. An integral part of his work is a controller he developed and which guides the aircraft along to the emergency runway planned by „Safe2Land".

The final analysis of flight data from simulations and a real flight test demonstrated the high accuracy of the automated gliding flight. Even with simulated turbulence, the position on the final approach deviated less than 25 centimeters horizontally and less than five centimeters vertically from the pre-calculated values. And even during a real test flight, the flight model controlled by Safe2Land landed safely on a meadow.

Wissenschaftliche Ansprechpartner:

Prof. Wolfram Schiffmann

Weitere Informationen: ELA und ELFI

Stephan Düppe | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH
09.07.2020 | Association for Computing Machinery

nachricht Virtual Reality Environments for the Home Office
09.07.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

Science & Research
Overview of more VideoLinks >>>