Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017

Device's braided qubits could form component of topological quantum computer

Rice University physicists dedicated to creating the working components of a fault-tolerant quantum computer have succeeded in creating a previously unseen state of matter.


Rice's "topological excitonic insulators" are made of sheets of semiconductors (top) that become insulators at a critical temperature around 10 kelvins. At the critical point, a superfluid quantum liquid of excitons -- pairs of negatively charged electrons (blue dots) and positively charged electron holes (red dots) -- forms inside the devices (bottom) and electricity ceases to pass through them.

Credit: R. Du/Rice University

Usage Restrictions: For news reporting purposes only

The "topological excitonic insulator" was observed in tests at Rice by an international team from the United States and China. The researchers report their findings this week in the journal Nature Communications. Their device could potentially be used in a topological quantum computer, a type of quantum computer that stores information in quantum particles that are "braided" together like knots that are not easily broken. These stable, braided "topological" quantum bits, or topological qubits, could overcome one of the primary limitations of quantum computing today: Qubits that are nontopological easily "decohere" and lose the information they are storing.

Conventional computers use binary data, information that is stored as ones or zeros. Thanks to the quirks of quantum mechanics, qubits can represent both ones, zeros and a third state that's both a one and a zero at the same time.

This third state can be used to speed up computation, so much so that a quantum computer with just a few dozen qubits could finish some computations as quickly as a microchip with a billion binary transistors.

In the new study, Rice physicist Rui-Rui Du and former Rice graduate student Lingjie Du (no relation) collaborated with researchers from Rice, Peking University and the Chinese Academy of Sciences to create excitonic insulators made of tiny slivers of ultrapure, stacked semiconductors. The devices, which are no more than 100 microns wide, contain a sheet of indium arsenide atop a sheet of gallium antimony. When cooled in a bath of liquid helium to a critically low temperature around 10 kelvins, a superfluid quantum liquid forms inside the devices and electricity ceases to pass through them.

"This is very much like the process in a superconductor, where you have electrons that are attracted to one another to form pairs that flow without resistance," said Rui-Rui Du, a professor of physics and astronomy at Rice and a researcher at the Rice Center for Quantum Materials (RCQM). "In our case, electrons pair with positively charged 'electron holes' to create a superfluid with a net charge of zero."

Lingjie Du, now a postdoctoral researcher at Columbia University, said, "It's a collective effect, so to an outside observer the system conducts electricity normally until it's cooled to the critical temperature, where it suddenly changes phase to become a perfect insulator."

To prove that the device was the long-sought excitonic insulator, the team first had to show the fluid was a quantum condensate. That task fell to Xinwei Li, a graduate student in the laboratory of RCQM researcher Junichiro Kono. Li and Kono, a professor of electrical and computer engineering at Rice, shined terahertz waves through the devices as they were cooled to the critical temperature and found that the samples absorbed terahertz energy in two distinct bands -- a signature of quantum condensation.

Showing the device was topological involved testing for electrical conduction in a one-dimensional band around their perimeter.

"This novel property of the edge state is the thing that people are very interested in," Rui-Rui Du said. "This edge state has no electrical resistance, and you get conduction in which electrons are tied to their spin moment. If they have one type of spin, they go clockwise and if they have the other they go counterclockwise."

Braiding circuits built on these opposing electron streams would have inherent topological signatures that could be used to form fault-tolerant qubits.

"The other beauty of this is that the same principles still apply at room temperature," Rui-Rui Du said. "There are atomically layered materials such as tungsten disulfide that could potentially be used to create this same effect at room temperature, provided they could be made in pure enough form."

###

Additional co-authors include Wenkai Lou and Kai Chang of the Chinese Academy of Sciences in Beijing and Gerard Sullivan of Teledyne Scientific Imaging in Thousand Oaks, Calif. The research was supported by the Department of Energy, the National Science Foundation (NSF) and the National Science Foundation of China. Some experiments were performed at the National High Magnetic Field Laboratory, which is supported by NSF and the state of Florida.

A copy of the paper is available at: http://www.nature.com/articles/s41467-017-01988-1

Related research stories from Rice:

Rice physicists move one step closer to quantum computer -- Oct. 4, 2011 http://news.rice.edu/2011/10/04/rice-physicists-move-one-step-closer-to-quantum-computer/

Bizarre matter could find use in quantum computers -- April 21, 2010 http://news.rice.edu/2010/04/21/bizarre-matter-could-find-use-in-quantum-computers/

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

David Ruth | EurekAlert!

More articles from Information Technology:

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht A burst of ”synchronous” light
08.11.2018 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>