Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017

Device's braided qubits could form component of topological quantum computer

Rice University physicists dedicated to creating the working components of a fault-tolerant quantum computer have succeeded in creating a previously unseen state of matter.


Rice's "topological excitonic insulators" are made of sheets of semiconductors (top) that become insulators at a critical temperature around 10 kelvins. At the critical point, a superfluid quantum liquid of excitons -- pairs of negatively charged electrons (blue dots) and positively charged electron holes (red dots) -- forms inside the devices (bottom) and electricity ceases to pass through them.

Credit: R. Du/Rice University

Usage Restrictions: For news reporting purposes only

The "topological excitonic insulator" was observed in tests at Rice by an international team from the United States and China. The researchers report their findings this week in the journal Nature Communications. Their device could potentially be used in a topological quantum computer, a type of quantum computer that stores information in quantum particles that are "braided" together like knots that are not easily broken. These stable, braided "topological" quantum bits, or topological qubits, could overcome one of the primary limitations of quantum computing today: Qubits that are nontopological easily "decohere" and lose the information they are storing.

Conventional computers use binary data, information that is stored as ones or zeros. Thanks to the quirks of quantum mechanics, qubits can represent both ones, zeros and a third state that's both a one and a zero at the same time.

This third state can be used to speed up computation, so much so that a quantum computer with just a few dozen qubits could finish some computations as quickly as a microchip with a billion binary transistors.

In the new study, Rice physicist Rui-Rui Du and former Rice graduate student Lingjie Du (no relation) collaborated with researchers from Rice, Peking University and the Chinese Academy of Sciences to create excitonic insulators made of tiny slivers of ultrapure, stacked semiconductors. The devices, which are no more than 100 microns wide, contain a sheet of indium arsenide atop a sheet of gallium antimony. When cooled in a bath of liquid helium to a critically low temperature around 10 kelvins, a superfluid quantum liquid forms inside the devices and electricity ceases to pass through them.

"This is very much like the process in a superconductor, where you have electrons that are attracted to one another to form pairs that flow without resistance," said Rui-Rui Du, a professor of physics and astronomy at Rice and a researcher at the Rice Center for Quantum Materials (RCQM). "In our case, electrons pair with positively charged 'electron holes' to create a superfluid with a net charge of zero."

Lingjie Du, now a postdoctoral researcher at Columbia University, said, "It's a collective effect, so to an outside observer the system conducts electricity normally until it's cooled to the critical temperature, where it suddenly changes phase to become a perfect insulator."

To prove that the device was the long-sought excitonic insulator, the team first had to show the fluid was a quantum condensate. That task fell to Xinwei Li, a graduate student in the laboratory of RCQM researcher Junichiro Kono. Li and Kono, a professor of electrical and computer engineering at Rice, shined terahertz waves through the devices as they were cooled to the critical temperature and found that the samples absorbed terahertz energy in two distinct bands -- a signature of quantum condensation.

Showing the device was topological involved testing for electrical conduction in a one-dimensional band around their perimeter.

"This novel property of the edge state is the thing that people are very interested in," Rui-Rui Du said. "This edge state has no electrical resistance, and you get conduction in which electrons are tied to their spin moment. If they have one type of spin, they go clockwise and if they have the other they go counterclockwise."

Braiding circuits built on these opposing electron streams would have inherent topological signatures that could be used to form fault-tolerant qubits.

"The other beauty of this is that the same principles still apply at room temperature," Rui-Rui Du said. "There are atomically layered materials such as tungsten disulfide that could potentially be used to create this same effect at room temperature, provided they could be made in pure enough form."

###

Additional co-authors include Wenkai Lou and Kai Chang of the Chinese Academy of Sciences in Beijing and Gerard Sullivan of Teledyne Scientific Imaging in Thousand Oaks, Calif. The research was supported by the Department of Energy, the National Science Foundation (NSF) and the National Science Foundation of China. Some experiments were performed at the National High Magnetic Field Laboratory, which is supported by NSF and the state of Florida.

A copy of the paper is available at: http://www.nature.com/articles/s41467-017-01988-1

Related research stories from Rice:

Rice physicists move one step closer to quantum computer -- Oct. 4, 2011 http://news.rice.edu/2011/10/04/rice-physicists-move-one-step-closer-to-quantum-computer/

Bizarre matter could find use in quantum computers -- April 21, 2010 http://news.rice.edu/2010/04/21/bizarre-matter-could-find-use-in-quantum-computers/

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations via Twitter @RiceUNews

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

David Ruth | EurekAlert!

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

Volcanoes under pressure

18.11.2019 | Earth Sciences

Scientists discover how the molecule-sorting station in our cells is formed and maintained

18.11.2019 | Life Sciences

Hot electrons harvested without tricks

18.11.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>