Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots as Tools and Partners in Rehabilitation

17.08.2018

Why trust should play a crucial part in the development of intelligent machines for medical therapies

In future decades the need for effective strategies for medical rehabilitation will increase significantly, because patients’ rate of survival after diseases with severe functional deficits, such as a stroke, will increase. Socially assistive robots (SARs) are already being used in rehabilitation for this reason.


A robot congratulates a patient for correctly sorting the colored beakers.

Photo: Shelly Levy-Tzedek

In the journal Science Robotics, a research team led by neuroscientist Dr. Philipp Kellmeyer of the Freiburg University Medical Center and Prof. Dr. Oliver Müller from the Department of Philosophy of the University of Freiburg, analyzes the improvements necessary to make SARs valuable and trustworthy assistants for medical therapies.

The researchers conclude that the development of SARs not only requires technical improvements, but primarily social, trust-building measures. Rehabilitation patients in particular are dependent on a reliable relationship with their therapists.

So there must be trust in the safety of the robotic system, especially regarding the predictability of the machines’ behavior. Given the ever-growing intelligence of the robots and with it their independence, this is highly important.

In addition, robots and patients can only interact well, the scientists explain, when they have shared goals that they pursue through the therapy.

To achieve this, aspects of philosophical and developmental psychology must also be taken into account in the development of SARs: the ability of robots to recognize the aims and motives of a patient is a critical requirement if cooperation is to be successful. So there must also be trust for the participants to adapt to one another.

The frustration felt by patients, for instance as a result of physical or linguistic limitations, would be avoided if the robots were adapted to the specific needs and vulnerabilities of the patient in question.

Philipp Kellmeyer and Oliver Müller are members of the Cluster of Excellence BrainLinks-BrainTools of the University of Freiburg. The study also involved Prof. Dr. Shelly Levy-Tzedek and Ronit Feingold-Polak from the Ben Gurion University of the Negev, Israel. In the 2018/19 academic year, the Freiburg researchers together with the legal academic Prof. Dr. Silja Vöneky and the IT specialist Prof. Dr. Wolfram Burgard, both from the University of Freiburg, are developing a Research Focus into normative aspects of interaction between people and autonomous intelligent systems at the Freiburg Institute for Advanced Studies (FRIAS).

Contact:
Dr. Philipp Kellmeyer
Translational Neurotechnological Lab (AG Ball)
Department of Neurosurgery at the Freiburg University Medical Center
and BrainLinks-BrainTools
University of Freiburg
Tel.: + 49 761 270-87570
philipp.kellmeyer@uniklinik-freiburg.de

Prof. Dr. Oliver Müller
Department of Philosophy and BrainLinks-BrainTools
University of Freiburg
Tel.: + 49 761 203-2432
oliver.mueller@philosophie.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm-en/press-releases-2018/robots-as-tools-and-par...

Rudolf-Werner Dreier | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Enjoying virtual-reality-entertainment without headache or motion sickness
19.09.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Scientists use artificial neural networks to predict new stable materials
18.09.2018 | University of California - San Diego

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

Making better use of enzymes: a new research project at Jacobs University

19.09.2018 | Life Sciences

Light provides spin

19.09.2018 | Physics and Astronomy

Enjoying virtual-reality-entertainment without headache or motion sickness

19.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>