Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot eyes will benefit from insect vision

11.06.2015

The way insects see and track their prey is being applied to a new robot under development at the University of Adelaide, in the hopes of improving robot visual systems.

The project - which crosses the boundaries of neuroscience, mechanical engineering and computer science - builds on years of research into insect vision at the University.


University of Adelaide Ph.D. student Zahra Bagheri and supervisor Professor Benjamin Cazzolato (School of Mechanical Engineering) with the robot under development. The robot features a vision system using algorithms based on insect vision.

Credit: The University of Adelaide

In a new paper published today in the Journal of The Royal Society Interface, researchers describe how the learnings from both insects and humans can be applied in a model virtual reality simulation, enabling an artificial intelligence system to 'pursue' an object.

"Detecting and tracking small objects against complex backgrounds is a highly challenging task," says the lead author of the paper, Mechanical Engineering PhD student Zahra Bagheri.

"Consider a cricket or baseball player trying to take a match-winning catch in the outfield. They have seconds or less to spot the ball, track it and predict its path as it comes down against the brightly coloured backdrop of excited fans in the crowd - all while running or even diving towards the point where they predict it will fall!

"Robotics engineers still dream of providing robots with the combination of sharp eyes, quick reflexes and flexible muscles that allow a budding champion to master this skill," she says.

Research conducted in the lab of University of Adelaide neuroscientist Dr Steven Wiederman (School of Medical Sciences) has shown that flying insects, such as dragonflies, show remarkable visually guided behaviour. This includes chasing mates or prey, even in the presence of distractions, like swarms of insects.

"They perform this task despite their low visual acuity and a tiny brain, around the size of a grain of rice. The dragonfly chases prey at speeds up to 60 km/h, capturing them with a success rate over 97%," Ms Bagheri says.

The team of engineers and neuroscientists has developed an unusual algorithm to help emulate this visual tracking. "Instead of just trying to keep the target perfectly centred on its field of view, our system locks on to the background and lets the target move against it," Ms Bagheri says. "This reduces distractions from the background and gives time for underlying brain-like motion processing to work. It then makes small movements of its gaze and rotates towards the target to keep the target roughly frontal."

This bio-inspired "active vision" system has been tested in virtual reality worlds composed of various natural scenes. The Adelaide team has found that it performs just as robustly as the state-of-the-art engineering target tracking algorithms, while running up to 20 times faster.

"This type of performance can allow for real-time applications using quite simple processors," says Dr Wiederman, who is leading the project, and who developed the original motion sensing mechanism after recording the responses of neurons in the dragonfly brain.

"We are currently transferring the algorithm to a hardware platform, a bio-inspired, autonomous robot."

###

Media Contacts:

Zahra Bagheri
PhD student
School of Mechanical Engineering
The University of Adelaide
zahra.bagheri@adelaide.edu.au

Dr Steven Wiederman
ARC Discovery Early Career Researcher
School of Medical Sciences
The University of Adelaide
Phone: +61 8 8313 8067
steven.wiederman@adelaide.edu.au

Dr. Steven Wiederman | EurekAlert!

More articles from Information Technology:

nachricht Drones shown to make traffic crash site assessments safer, faster and more accurate
17.01.2019 | Purdue University

nachricht Next generation photonic memory devices are light-written, ultrafast and energy efficient
15.01.2019 | Eindhoven University of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>