Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice tests wireless data delivery over active TV channels

14.07.2015

WATCH transmits data over UHF without interfering with TV broadcasts

Rice University engineers have demonstrated the first system that allows wireless data transmissions over UHF channels during active TV broadcasts. If the technology were incorporated into next-generation TVs or smart remotes, it could significantly expand the reach of so-called "super Wi-Fi" networks in urban areas.


Rice researchers used WARP, the wireless open-access research platform, to build the first system that allows wireless data transmissions over UHF channels during active TV broadcasts.

Credit: Jeff Fitlow/Rice University

"Due to the popularity of cable, satellite and Internet TV, the UHF spectrum is one of the most underutilized portions of the wireless spectrum in the United States," said lead researcher Edward Knightly. "That's a bitter irony because the demand for mobile data services is expected to grow tenfold in the next five years, and the UHF band is perfectly suited for wireless data."

Knightly, professor and department chair of electrical and computer engineering and director of the Rice Wireless Network Group, said the UHF spectrum, which ranges from 400 to 700 megahertz, is often called the "beachfront property" of the wireless spectrum. Unlike the higher frequency signals used for existing Wi-Fi hotspots, UHF signals carry for miles and are not blocked by walls or trees. Because of these advantages, wireless data hotspots that use UHF are often referred to as "super Wi-Fi."

... more about:
»Channels »UHF »Wi-Fi »broadcasters »interfere

In the U.S., TV broadcasters have been given preferential access to the UHF spectrum for more than 50 years. If no TV broadcaster has laid claim to a UHF channel, the Federal Communications Commission allows secondary users to transmit wireless data on that channel, provided that the transmissions do not interfere with TV broadcasts in any part of the UHF spectrum. The rules governing this secondary access are often referred to as "TV white space" rules in reference to the industry term for used or blank portions of the TV spectrum.

"Unfortunately, in the most densely populated areas of the country, where the need for additional wireless data services is the greatest, the amount of available white space is extremely limited," Knightly said. "In our most recent tests in Houston, one channel is open in parts of the city and none are available in others. This is fairly typical of a large U.S. urban area."

Though most of the UHF band is already taken in U.S. cities, it is largely underutilized. According to a 2014 report by the TV rating company Nielsen, fewer than 10 percent of U.S. households rely on over-the-air broadcasts for TV programming.

To demonstrate that wireless service providers could make use of the UHF spectrum without interfering with TV broadcasters, Knightly and Rice graduate student Xu Zhang developed a technology called "Wi-Fi in Active TV Channels," or WATCH, and received FCC approval to test it at the Rice campus in 2014.

WATCH requires no coordination with or changes to legacy TV transmitters. Instead, TV signals are broadcast as normal and the WATCH system actively monitors whenever a nearby TV is tuned to a channel to avoid interfering with reception. The technology to allow this comes in two parts. One aspect of WATCH monitors TV broadcasts on a channel and uses sophisticated signal-canceling techniques to insert wireless data transmissions into the same channel; that eliminates TV broadcasts from interfering with the super Wi-Fi data signals being sent to computer users, Knightly said.

The other aspect of WATCH is dedicated to making certain that data transmissions do not interfere with TV reception; this part of the technology would require TVs to report when they are being tuned to a UHF channel, Knightly said. In practice, this could be accomplished with either smart TV remotes or next-generation TV sets. In the tests at Rice, Zhang constructed a "smart-remote" app that reported whenever a test television in the lab was tuned to a UHF channel. When that happened, the WATCH system automatically shifted its data transmissions to another part of the UHF spectrum that wasn't being used.

"Our tests showed that WATCH could provide at least six times more wireless data compared with situations where we were limited only to the traditionally available white-space spectrum," Knightly said. With WATCH in use, Knightly said it took a fraction of a second longer than normal to tune in a UHF TV broadcast on the test television. While the increment could be measured -- it was less than a 5 percent increase -- it was almost imperceptible to the person switching channels, he said.

Zhang and Knightly's report on the research, titled "WATCH: Wi-Fi in Active TV Channels," won best-paper honors last month at Association of Computing Machinery's MobiHoc 2015 conference in Hangzhou, China. Knightly said technology like WATCH will become increasingly important as the demand for wireless data services increases and the number of broadcast TV viewers decreases.

For example, a 2014 Cisco report found that nearly a half-billion mobile devices with data connections had been added to the global supply within the previous year, bringing the global total to 7.4 billion -- a bit more than number of people on Earth, according to the U.S. Census bureau. Of the 7.4 billion data-connected devices, Cisco found that more than a quarter were smartphones, which used an estimated 22 times more data than nonsmart devices.

"Allowing the UHF spectrum to be inefficiently used makes little sense today and will make even less sense in the future," Knightly said. "There are already more people in the United States who require mobile data services than there are people using broadcast-only TV. By showing that these two communities can coexist, we hope to spur innovation and a public debate about how this valuable resource could be used."

###

The research is supported by the National Science Foundation, Cisco Systems and the Keck Foundation.

A copy of the WATCH paper is available at: http://networks.rice.edu/files/2015/04/CP-6.pdf

This release can be found online at news.rice.edu.

Follow Rice News and Media Relations on Twitter @RiceUNews.

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked among some of the top schools for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.

Media Contact

David Ruth
david@rice.edu
713-348-6327

 @RiceUNews

http://news.rice.edu 

David Ruth | EurekAlert!

Further reports about: Channels UHF Wi-Fi broadcasters interfere

More articles from Information Technology:

nachricht ‘Time Machine’ heralds new era
25.03.2019 | Technische Universität Dresden

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>