Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary technology enables objects to know how they are being touched

04.05.2012
Disney, CMU researchers envision 'smart doorknobs' and gesture-controlled smartphones
A doorknob that knows whether to lock or unlock based on how it is grasped, a smartphone that silences itself if the user holds a finger to her lips and a chair that adjusts room lighting based on recognizing if a user is reclining or leaning forward are among the many possible applications of Touché, a new sensing technique developed by a team at Disney Research, Pittsburgh, and Carnegie Mellon University.

Touché is a form of capacitive touch sensing, the same principle underlying the types of touchscreens used in most smartphones. But instead of sensing electrical signals at a single frequency, like the typical touchscreen, Touché monitors capacitive signals across a broad range of frequencies.

This Swept Frequency Capacitive Sensing (SFCS) makes it possible to not only detect a "touch event," but to recognize complex configurations of the hand or body that is doing the touching. An object thus could sense how it is being touched, or might sense the body configuration of the person doing the touching.

SFCS is robust and can enhance everyday objects by using just a single sensing electrode. Sometimes, as in the case of a doorknob or other conductive objects, the object itself can serve as a sensor and no modifications are required. Even the human body or a body of water can be a sensor.

"Signal frequency sweeps have been used for decades in wireless communication, but as far as we know, nobody previously has attempted to apply this technique to touch interaction," said Ivan Poupyrev, senior research scientist at Disney Research, Pittsburgh. "Yet, in our laboratory experiments, we were able to enhance a broad variety of objects with high-fidelity touch sensitivity. When combined with gesture recognition techniques, Touché demonstrated recognition rates approaching 100 percent. That suggests it could immediately be used to create new and exciting ways for people to interact with objects and the world at large."

In addition to Poupyrev, the research team included Chris Harrison, a Ph.D. student in Carnegie Mellon's Human-Computer Interaction Institute, and Munehiko Sato, a Disney intern and a Ph.D. student in engineering at the University of Tokyo. The researchers will present their findings May 7 at CHI 2012, the Conference on Human Factors in Computing Systems, in Austin, Texas, where it has been recognized with a prestigious Best Paper Award.

Both Touché and smartphone touchscreens are based on the phenomenon known as capacitive coupling. In a capacitive touchscreen, the surface is coated with a transparent conductor that carries an electrical signal. That signal is altered when a person's finger touches it, providing an alternative path for the electrical charge. By monitoring the change in the signal, the device can determine if a touch occurs.

By monitoring a range of signal frequencies, however, Touché can derive much more information. Different body tissues have different capacitive properties, so monitoring a range of frequencies can detect a number of different paths that the electrical charge takes through the body.

Making sense of all of that SFCS information, however, requires analyzing hundreds of data points. As microprocessors have become steadily faster and less expensive, it now is feasible to use SFCS in touch interfaces, the researchers said.

"Devices keep getting smaller and increasingly are embedded throughout the environment, which has made it necessary for us to find ways to control or interact with them, and that is where Touché could really shine," Harrison said.

Sato said Touché could make computer interfaces as invisible to users as the embedded computers themselves. "This might enable us to one day do away with keyboards, mice and perhaps even conventional touchscreens for many applications," he said.

Among the proof-of-concept applications the researchers have investigated is a smart doorknob. Depending on whether the knob was grasped, touched with one finger or two, or pinched, a door could be programmed to lock or unlock itself, admit a guest, or even leave a reply message, such as "I'll be back in five minutes."

In another proof-of-concept experiment, they showed that SFCS could enhance a traditional touchscreen by sensing not just the fingertip, but the configuration of the rest of the hand. They created the equivalent of a mouse "right click," zoom in/out and copy/paste functions depending on whether the user pinched the phone's screen and back with one finger or two, or used a thumb.

The researchers also were able to monitor body gestures, such as touching fingers, grasping hands and covering ears by having subjects wear electrodes similar to wristwatches on both arms. Such gestures could be used to control a smartphone or other device.

They also showed that a single electrode attached to any water vessel could detect a number of gestures, such as fingertip submerged, hand submerged and hand on bottom. Sensing touch in liquids might be particularly suited to toys, games and food appliances.

More information about Touché can be found at: http://www.disneyresearch.com/research/human_comp_interaction.htm. An explanatory video can be viewed on YouTube.

About Carnegie Mellon University

Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst of "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

About Disney Research

Disney Research (www.disneyresearch.com) is a network of research laboratories supporting The Walt Disney Company. Its purpose is to pursue scientific, and technological innovation to advance the Company's broad media and entertainment efforts. Disney Research is managed by an internal Disney Research Council co-chaired by Disney-Pixar's Ed Catmull and Walt Disney Imagineering's Bruce Vaughn, and including the directors of the individual labs. It has facilities in Los Angeles, San Francisco, Pittsburgh, Boston, and Zurich. Research topics include Computer Graphics, Video Processing, Computer Vision, Robotics, Radio and Antennas, Wireless Communications, Human-Computer Interaction, Displays, Data Mining, Machine Learning and Behavioral Sciences.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Information Technology:

nachricht CiViQ brings quantum technologies to the telecommunications arena
21.11.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Earthquake researchers finalists for supercomputing prize
19.11.2018 | University of Tokyo

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

New China and US studies back use of pulse oximeters for assessing blood pressure

21.11.2018 | Medical Engineering

Exoplanet stepping stones

21.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>