Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers from Kiel and Bochum develop new information storage device

12.10.2015

Scientists from Kiel University and the Ruhr Universität Bochum (RUB) have developed a new way to store information that uses ions to save data and electrons to read data. This could enable the size of storage cells to be reduced to atomic dimensions. But that is not the only advantage of the new technology, as the researchers reported in the journal Scientific Reports.

"Six plus seven makes three - plus one carried over", calculated Professor Hermann Kohlstedt, Head of the Nanoelectronic group at Kiel University. This describes that storing information in the short or long term is important - even for the simplest calculations. Modern computers use this principle in practically every Bit (unit of measurement for the digital information content) and the almost unbelievable increase in performance over the last decade was based on a very simple rule: faster processors and more storage space.


Caption: Mirko Hansen in the clean room at Kiel's Faculty of Engineering, using a microscope to check the manufactured storage cells.

Photo/Copyright: AG Nanoelectronic

Standard memory devices are based on electrons which are displaced by applying voltage. The development of ever smaller and more energy-efficient storage devices according to this principle, however, is increasingly approaching its limits: because there is not just one storage device in our computers, but several optimised ones, depending on the task. "Moving data between individual storage devices has now begun to take a not inconsiderable amount of time. Put simply: more is moved backwards and forwards than is calculated", said Kohlstedt. That is why industrial companies and research institutes around the world are working on a more efficient, universal storage device that combines the advantages of all storage devices and moves as little data as possible back and forth.

In order to do so, researchers want to move away from charge-based storage and towards the type which is based on electrical resistance. A component just like this has now come from the labs in Kiel and Bochum. It consists of two metallic electrodes that are separated by a so-called solid ion conductor, usually a transition metal oxide. If a voltage is then applied, the ohmic resistance of the storage cell changes. This is caused by oxidation and reduction processes on the electrodes, as well as ions within the layer between being displaced. The advantage is that cells that are constructed in this way are easy to produce and can be reduced to almost the size of atoms.

The scientists achieve a long storage time by setting the ion density in the cells precisely via the voltage applied. "That was a big challenge", said Mirko Hansen, doctoral candidate and lead author of the study from Kohlstedt's team, because electronic and ionic effects needed to be uncoupled in order to manage this. "Electrons are roughly 1000 times lighter than ions and so they move much more easily under the influence of an external voltage. We were able to successfully exploit this, whereby in our component, the ions are immovable for extremely low voltages, while the electrons remain mobile and can be used to read the storage status."

The trick: the researchers built an ion conductor, which was only a few nanometres (a millionth of a millimetre) thin to utilise quantum-mechanical effects for the flow through the storage cells. "The tunnel effect enables us to move electrons through the ultra-thin layer with very little energy", said Martin Ziegler, co-author of the publication from Kiel. To put it clearly, ions are moved within the storage cell at voltages above one volt, and electrons, on the other hand, at voltages far below one volt. This way, ions can be specifically used for storing and electrons specifically for reading data.

The researchers also reported that their research had another very interesting element. The new resistance-based storage devices could even simulate brain structures. Rapid pattern recognition and a low energy consumption in connection with enormous parallel data processing would enable revolutionary computer architectures. "This opens up a massive area for innovations in combination with terms like Industry 4.0, in which autonomous robots work, or cars which drive themselves and are out on our roads", said Professor Hermann Kohlstedt and his colleague from Bochum, Dr Thomas Mussenbrock to describe the research results. They are both working on developing artificial neural networks in the 'FOR 2093' researcher group.

Original publication
M. Hansen, M. Ziegler, L. Kolberg, R. Soni, S. Dirkmann, T. Mussenbrock & H. Kohlstedt. A double barrier memristive device. Published 08 September 2015, Scientific Reports 5, Article number: 13753 (2015). doi:10.1038/srep13753

More information:
www.for2093.uni-kiel.de

Details, which are only a millionth of a millimetre in size: This is what the research focus "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between materials science, chemistry, physics, biology, electrical engineering, computer science, food technology and various branches of medicine, the research focus aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at www.kinsis.uni-kiel.de

Contact:
Professor Dr Hermann Kohlstedt
Nanoelektronik
Kiel University
Tel.: +49 (0)431 880 6075
E-mail: hko@tf.uni-kiel.de

Mirko Hansen
Nanoelektronik
Kiel University
Tel.: +49 (0)431 880 6079
E-mail: mha@tf.uni-kiel.de

Dr Martin Ziegler
Nanoelektronik
Kiel University
Tel.: +49 (0)431 880 6067
E-mail: maz@tf.uni-kiel.de

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel
Further information:
http://www.uni-kiel.de

More articles from Information Technology:

nachricht Artificial Intelligence speeds up photodynamics simulations
12.09.2019 | University of Vienna

nachricht Automated assembly system manufactures solid-state LIDAR systems for autonomous vehicles
12.09.2019 | Fraunhofer-Institut für Produktionstechnologie IPT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

Im Focus: Graphene sets the stage for the next generation of THz astronomy detectors

Researchers from Chalmers University of Technology have demonstrated a detector made from graphene that could revolutionize the sensors used in next-generation space telescopes. The findings were recently published in the scientific journal Nature Astronomy.

Beyond superconductors, there are few materials that can fulfill the requirements needed for making ultra-sensitive and fast terahertz (THz) detectors for...

Im Focus: Physicists from Stuttgart prove the existence of a supersolid state of matte

A supersolid is a state of matter that can be described in simplified terms as being solid and liquid at the same time. In recent years, extensive efforts have been devoted to the detection of this exotic quantum matter. A research team led by Tilman Pfau and Tim Langen at the 5th Institute of Physics of the University of Stuttgart has succeeded in proving experimentally that the long-sought supersolid state of matter exists. The researchers report their results in Nature magazine.

In our everyday lives, we are familiar with matter existing in three different states: solid, liquid, or gas. However, if matter is cooled down to extremely...

Im Focus: World record for tandem perovskite-CIGS solar cell

A team headed by Prof. Steve Albrecht from the HZB will present a new world-record tandem solar cell at EU PVSEC, the world's largest international photovoltaic and solar energy conference and exhibition, in Marseille, France on September 11, 2019. This tandem solar cell combines the semiconducting materials perovskite and CIGS and achieves a certified efficiency of 23.26 per cent. One reason for this success lies in the cell’s intermediate layer of organic molecules: they self-organise to cover even rough semiconductor surfaces. Two patents have been filed for these layers.

Perovskite-based solar cells have experienced an incredibly rapid increase in efficiency over the last ten years. The combination of perovskites with classical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Low sea-ice cover in the Arctic

13.09.2019 | Earth Sciences

Researchers produce synthetic Hall Effect to achieve one-way radio transmission

13.09.2019 | Power and Electrical Engineering

Penn engineers' new topological insulator reroutes photonic 'traffic' on the fly

13.09.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>