Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Use Flexible Channel Width To Improve User Experience On Wireless Systems

05.06.2012
Researchers from North Carolina State University have developed a technique to efficiently divide the bandwidth of the wireless spectrum in multi-hop wireless networks to improve operation and provide all users in the network with the best possible performance.

“Our objective is to maximize throughput while ensuring that all users get similar ‘quality of experience’ from the wireless system, meaning that users get similar levels of satisfaction from the performance they experience from whatever applications they’re running,” says Parth Pathak, a Ph.D. student in computer science at NC State and lead author of a paper describing the research.

Multi-hop wireless networks use multiple wireless nodes to provide coverage to a large area by forwarding and receiving data wirelessly between the nodes. However, because they have limited bandwidth and may interfere with each other’s transmissions, these networks can have difficulty providing service fairly to all users within the network. Users who place significant demands on network bandwidth can effectively throw the system off balance, with some parts of the network clogging up while others remain underutilized.

Over the past few years, new technology has become available that could help multi-hop networks use their wireless bandwidth more efficiently by splitting the band into channels of varying sizes, according to the needs of the users in the network. Previously, it was only possible to form channels of equal size. However, it was unclear how multi-hop networks could take advantage of this technology, because there was not a clear way to determine how these varying channel widths should be assigned.

Now an NC State team has advanced a solution to the problem.

“We have developed a technique that improves network performance by determining how much channel width each user needs in order to run his or her applications,” says Dr. Rudra Dutta, an associate professor of computer science at NC State and co-author of the paper. “This technique is dynamic. The channel width may change – becoming larger or smaller – as the data travels between nodes in the network. The amount of channel width allotted to users is constantly being modified to maximize the efficiency of the system and avoid what are, basically, data traffic jams.”

In simulation models, the new technique results in significant improvements in a network’s data throughput and in its “fairness” – the degree to which all network users benefit from this throughput.

The researchers hope to test the technique in real-world conditions using CentMesh, a wireless network on the NC State campus.

The paper, “Channel Width Assignment Using Relative Backlog: Extending Back-pressure to Physical Layer,” was co-authored by former NC State master’s student Sankalp Nimborkhar. The paper will be presented June 12 at the 13th International Symposium on Mobile Ad Hoc Networking and Computing in Hilton Head, S.C. The research was supported by the U.S. Army Research Office and the Secure Open Systems Initiative at NC State.

-shipman-

Note to Editors: The presentation abstract follows.

“Channel Width Assignment Using Relative Backlog: Extending Back-pressure to Physical Layer”

Authors: Parth H. Pathak, Sankalp Nimborkhar, and Rudra Dutta, North Carolina State University

Presented: June 12, 2012, at the 13th International Symposium on Mobile Ad Hoc Networking and Computing in Hilton Head, S.C.

Abstract: With recent advances in Software-defined Radios (SDRs), it has indeed become feasible to dynamically adapt the channel widths at smaller time scales. Even though the advantages of varying channel width (e.g. higher link throughput with higher width) have been explored before, as with most of the physical layer settings (rate, transmission power etc.), naively configuring channel widths of links can in fact have negative impact on wireless network performance. In this paper, we design a cross-layer channel width assignment scheme that adapts the width according to the backlog of link-layer queues. We leverage the benefits of varying channel widths while adhering to the invariants of back-pressure utility maximization framework. The presented scheme not only guarantees improved throughput and network utilization but also ensures bounded buffer occupancy and fairness.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Information Technology:

nachricht Novel communications architecture for future ultra-high speed wireless networks
17.06.2019 | IMDEA Networks Institute

nachricht Concert of magnetic moments
14.06.2019 | Forschungszentrum Juelich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>