Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop key power-splitting component for terahertz waves

30.06.2016

One of the most basic components of any communications network is a power splitter that allows a signal to be sent to multiple users and devices. Researchers from Brown University have now developed just such a device for terahertz radiation -- a range of frequencies that may one day enable data transfer up to 100 times faster than current cellular and Wi-Fi networks.

"One of the big thrusts in terahertz technology is wireless communications," said Kimberly Reichel, a post-doctoral researcher in Brown's School of Engineering who led the device's development. "We believe this is the first demonstration of a variable broadbrand power splitter for terahertz, which would be a fundamental device for use in a terahertz network."


One of the most basic components of any communications network is a power splitter that allows a signal to be sent to multiple users and devices. Researchers from Brown University have now developed just such a device for terahertz radiation -- a range of frequencies that may one day enable data transfer up to 100 times faster than current cellular and Wi-Fi networks.

Credit: Mittleman lab / Brown University

The device could have numerous applications, including as a component in terahertz routers that would send data packets to multiple computers, just like the routers in current Wi-Fi networks.

The new device is described in the Nature journal Scientific Reports.

Today's cellular and Wi-Fi networks rely on microwaves, but the amount of data that can travel on microwaves is limited by frequency. Terahertz waves (which span from about 100 to 10,000 GHz on the electromagnetic spectrum) have a higher frequency and therefore the potential to carry much more data. Until recently, however, terahertz hasn't received much attention from scientists and researchers, so many of the basic components for a terahertz communications network simply don't exist.

Daniel Mittleman, a professor in Brown's School of Engineering, has been working to develop some of those key components. His lab recently developed the first system for terahertz multiplexing and demultiplexing -- a method of sending multiple signals through a single medium and then separating them back out on the other side. Mittleman's lab has also produced a new type of lens for focusing terahertz waves.

Each of the components Mittleman has developed makes use of parallel-plate waveguides -- metal sheets that can constrain terahertz waves and guide them in particular directions.

"We're developing a family of waveguide tools that could be integrated to create the appropriate signal processing that one would need to do networking," said Mittleman, who was a co-author on the new paper along with Reichel and Brown research professor Rajind Mendis. "The power splitter is another member of that family."

The new device consists of several waveguides arranged to form a T-junction. Signal going into the leg of the T is split by a triangular septum at the junction, sending a portion of the signal down each of the two arms. The septum's triangular shape minimizes the amount of radiation that reflects back down the leg of the T, reducing signal loss. The septum can be moved right or left in order to vary the amount of power that is sent down either arm.

"We can go from an equal 50/50 split up to a 95/5 split, which is quite a range," Reichel said.

For this proof-of-concept device, the septum is manipulated manually, but Mittleman says that process could easily be motorized to enable dynamic switching of power output to each channel. That could enable the device to be incorporated in a terahertz router.

"It's reasonable to think that we could operate this at sub-millisecond timescales, which would be fast enough to do data packet switching," Mittleman said. "So this is a component that could be used to enable routing in the manner of the microwave routers we use today."

The researchers plan to continue to work with the new device. A next step, they said, would be to start testing error rates in data streams sent through the device.

"The goal of this work was to demonstrate that you can do variable power switching with a parallel-plate waveguide architecture," Mittleman said. "We wanted to demonstrate the basic physics and then refine the design."

###

The project was funded in part by the National Science Foundation and the W. M. Keck Foundation.

Kevin Stacey | EurekAlert!

Further reports about: Wi-Fi Wi-Fi networks microwaves terahertz waves waveguides waves

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>