Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017

Brown University researchers have developed a new method of manipulating the polarization of light at terahertz frequencies.

The technique uses stacks of carefully spaced metal plates to make a polarizing beamsplitter, a device that splits a beam of light by its differing polarization states, sending vertically polarized light in one direction and horizontally polarized light in another. Such a beamsplitter could be useful in a wide variety of systems that make use of terahertz radiation, from imaging systems to future communications networks.


Researchers have developed a new device that can split a beam of terahertz radiation by polarization state.

Credit: Mittleman Lab / Brown University

In the imaging world, the ability to deliver and detect radiation at different polarizations could be useful in terahertz microscopy and material characterization. In communications, polarized beams can enable multiple data streams to be sent down the same medium without interference.

"This stack-of-plates idea has advantages over traditional methods of manipulating polarization in the terahertz region," said Dan Mittleman, a professor in Brown's School of Engineering and senior author of a research paper describing the work in the journal Scientific Reports. "It's cheaper and physically more robust than other methods, and it's more versatile in what it allows us to do."

Rajind Mendis, a research assistant professor at Brown, led the work along with Mittleman, Brown graduate student Wei Zhang and Masaya Nagai, an associate professor at Osaka University in Japan.

The terahertz range is the swath of the electromagnetic spectrum between microwave and infrared frequencies. Use of terahertz waves in technological applications such as spectroscopy, sensing, imaging and ultra-high-bandwidth communications is growing, and researchers are working to develop the hardware components necessary to build these advanced terahertz systems.

Polarization refers to the orientation of an electromagnetic wave's peaks and valleys as the wave propagates. If a wave is propagating toward you, the peaks and valleys can be oriented vertically, horizontally or anywhere in between.

"Polarization is one of the key properties of any electromagnetic wave," Mittleman said. "Being able to manipulate polarization -- to measure it or to change it -- is one of the important capabilities you need in any electromagnetic system."

In the visible light realm, for example, manipulating polarization is used to create modern 3-D movies and to make sunglasses that reduce the glare of reflected light. Polarizing sunglasses are made by arranging polymer strands horizontally within lenses like bars on a jail cell. Those strands allow light that's polarized vertically to pass through, while blocking horizontally polarized light, which is the dominant polarization state of light reflected off shiny surfaces like cars and water.

Existing methods of manipulating polarization in the terahertz range are very similar to the technique used in polarizing sunglasses, albeit scaled to the much longer wavelengths of terahertz light compared to visible light. Polarizing filters for terahertz are generally an array of metal wires a few microns in diameter and spaced several microns apart.

The new technique the Brown and Osaka team developed replaces the wires with a stack of closely-spaced steel plates. Each pair of plates forms what's known as a parallel-plate waveguide. When terahertz light is shined on the stack at a 45-degree angle, it splits the beam by exciting two waveguide modes. One beam of vertically polarized light passes straight through the device, while another beam of horizontally polarized light is reflected in a 90-degree angle from the original beam axis.

The technique has a number of advantages over traditional wire filters, the researchers say. The stack-of-plates architecture, which is knows as an "artificial dielectric," is easy to make, and the materials are inexpensive. The plates are also much less fragile than wires.

"The artificial-dielectric concept also makes the device more versatile," Mendis said. "The device can be easily tuned for use at different terahertz frequencies simply by changing the size of the spacers separating the plates or by changing the illuminating angle."

Another advantage is that with the addition of a second similar artificial-dielectric structure, the researchers were able to build a device called an isolator. Isolators are used on high-powered lasers to prevent light from being reflected back into a laser emitter, which could destabilize or even damage it. A terahertz isolator could be an important component for future high-powered terahertz devices.

The Brown and Osaka team is in the process of patenting the new artificial-dielectric devices, and the researchers are hopeful that these devices will enable the development of new terahertz systems with far better capabilities.

"In anything you might want to do with an optical system, it's useful to be able to manipulate polarization," Mittleman said. "This is a simple, efficient, effective and versatile way to do that."

###

The work was supported in part by the National Science Foundation (EPMD #1609521).

Media Contact

Kevin Stacey
kevin_stacey@brown.edu
401-863-3766

 @brownuniversity

http://news.brown.edu/ 

Kevin Stacey | EurekAlert!

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>