Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers achieve HD video streaming at 10,000 times lower power

20.04.2018

Wearable cameras such as Snap Spectacles promise to share videos of live concerts or surgeries instantaneously with the world. But because these cameras must use smaller batteries to stay lightweight and functional, these devices can't perform high-definition video streaming.

Now, engineers at the University of Washington have developed a new HD video streaming method that doesn't need to be plugged in. Their prototype skips the power-hungry parts and has something else, like a smartphone, process the video instead.


The UW team's low-power prototype can stream 720p HD videos at 10 frames per second to a device, like a laptop, up to 14 feet away.

Credit: Dennis Wise/University of Washington

They do this using a technique called backscatter, through which a device can share information by reflecting signals that have been transmitted to it.

"The fundamental assumption people have made so far is that backscatter can be used only for low-data rate sensors such as temperature sensors," said co-author Shyam Gollakota, an associate professor in the UW's Paul G. Allen School of Computer Science & Engineering. "This work breaks that assumption and shows that backscatter can indeed support even full HD video."

The team presented these findings April 10 at the Advanced Computing Systems Association's Symposium on Networked Systems Design and Implementation.

In today's streaming cameras, the camera first processes and compresses the video before it is transmitted via Wi-Fi. These processing and communication components eat a lot of power, especially with HD videos. As a result, a lightweight streaming camera that doesn't need large batteries or a power source has been out of reach.

The UW team developed a new system that eliminates all of these components. Instead, the pixels in the camera are directly connected to the antenna, and it sends intensity values via backscatter to a nearby smartphone. The phone, which doesn't have the same size and weight restrictions as a small streaming camera, can process the video instead.

For the video transmission, the system translates the pixel information from each frame into a series of pulses where the width of each pulse represents a pixel value. The time duration of the pulse is proportional to the brightness of the pixel.

"It's sort of similar to how the cells in the brain communicate with each other," said co-author Joshua Smith, a professor in the Allen School and the UW Department of Electrical Engineering. "Neurons are either signaling or they're not, so the information is encoded in the timing of their action potentials."

The team tested their idea using a prototype that converted HD YouTube videos into raw pixel data. Then they fed the pixels into their backscatter system. Their design could stream 720p HD videos at 10 frames per second to a device up to 14 feet away.

"That's like a camera recording a scene and sending the video to a device in the next room," said co-author and computer science and engineering doctoral student Mehrdad Hessar.

The group's system uses 1,000 to 10,000 times less power than current streaming technology. But it still has a small battery that supports continuous operation. The next step is to make wireless video cameras that are completely battery-free, said Smith, who is the Milton and Delia Zeutschel Professor for Entrepreneurial Excellence.

The team has also created a low-resolution, low-power security camera, which can stream at 13 frames per second. This falls in line with the range of functions the group predicts for this technology.

"There are many applications," said co-author and recent UW electrical engineering alum Saman Naderiparizi. "Right now home security cameras have to be plugged in all the time. But with our technology, we can effectively cut the cord for wireless streaming cameras."

The group also envisions a world where these cameras are smart enough to only turn on when they are needed for their specific purpose, which could save even more energy.

Gollakota is excited the UW research team is at the forefront of the low-power video-streaming field and its impact on the industry.

"This video technology has the potential to transform the industry as we know it. Cameras are critical for a number of internet-connected applications, but so far they have been constrained by their power consumption," he said.

"Just imagine you go to a football game five years from now," Smith added. "There could be tiny HD cameras everywhere recording the action: stuck on players' helmets, everywhere across the stadium. And you don't have to ever worry about changing their batteries."

###

This technology has been licensed to Jeeva Wireless, a Seattle-based startup founded by a team of UW researchers, including Gollakota, Smith and Vamsi Talla, a recent UW alum and co-author on this paper.

This research was funded by the National Science Foundation, the Alfred P. Sloan Foundation and Google Faculty Research Awards.

For more information, contact the research team at batteryfreevideo@cs.washington.edu.

Photos available: https://drive.google.com/drive/folders/1BggmzWlWixsoNOQl-MQl1t3SvMcr6ylq?usp=sharing

Video available: https://www.youtube.com/watch?v=0H9MHixUVko&feature=youtu.be

Paper: https://homes.cs.washington.edu/~gshyam/Papers/videobackscatter.pdf

Release posted online at: http://www.washington.edu/news/2018/04/19/researchers-achieve-hd-video-streaming-at-10000-times-lower-power/

Media Contact

Sarah McQuate
smcquate@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Sarah McQuate | EurekAlert!

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>