Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers 3-D print first truly microfluidic 'lab on a chipl devices

15.08.2017

Custom 3-D printer, custom resin used to achieve smaller scale

Researchers at BYU are the first to 3D-print a viable microfluidic device small enough to be effective at a scale much less than 100 micrometers. Microfluidic devices are tiny chips that can sort out disease biomarkers, cells and other small structures in samples like blood by using microscopic channels incorporated into the devices.


Hua Gong, a Ph.D. student at BYU, holds up a 3-D-printed microfluidic device.

Credit: BYU Photo

The accomplishment, which is a major breakthrough toward mass-producing the medical diagnostic devices cheaply, is detailed online in academic journal Lab on a Chip. Researchers Greg Nordin, a BYU electrical engineering professor, and Adam Woolley, a BYU chemistry professor, say the key to their innovation was two-fold:

  • Building their own 3D printer to print at a much higher resolution
  • Using a new, specifically designed, low-cost, custom resin

"Others have 3D-printed fluidic channels, but they haven't been able to make them small enough for microfluidics," Nordin said. "So we decided to make our own 3D printer and research a resin that could do it."

Their work has produced labs on a chip with flow channel cross sections as small as 18 micrometers by 20 micrometers. Previous efforts to 3D-print microfluidic devices have failed to achieve success smaller than 100 micrometers. The researchers' 3D printer uses a 385 nm LED, which dramatically increases the available selection of UV absorbers for resin formulation compared to 3D printers with 405 nm LEDs.

Nordin said the advantages of 3D printing for microfluidic device fabrication are already well-known and that their method, digital light processing stereolithography (DLP-SLA), is an especially promising lower-cost approach. DLP-SLA uses a micromirror array chip, like those in most consumer projectors, to dynamically create the optical pattern for each layer during layer-by-layer printing of a device.

Researchers say they are laying the foundation for 3D printing to challenge the dominance of conventional methods -- soft lithography and hot embossing -- of microfluidic prototyping and development.

"We're deliberately trying to start a revolution in how microfluidic devices are fabricated," Nordin said.

Woolley's research interests in microfluidics focus on using lab-on-a-chip devices to detect biomarkers related to preterm birth. To that end, he and Nordin just submitted a proposal to the National Institutes of Health to develop the approach in this paper for preterm birth prediction.

Woolley said the paper represents an improvement of a factor of 100 on the size of features that are now possible in 3D printed microfluidics. It also cuts down on time and hassle: the BYU-authored approach can create a device in 30 minutes' time and doesn't require the use of clean rooms -- a special lab environment free from dust and other contaminants.

"It's not just a little step; it's a huge leap from one size regime to a previously inaccessible size regime for 3D printing," Woolley said. "It opens up a lot of doors for making microfluidics more easily and inexpensively."

Hua Gong is the BYU Ph.D. student who spearheaded the experimental work that made possible the 3D printing advances. Bryce Bickham, a BYU undergraduate, also played a key role in the research. Bryce, who just finished his freshman year, took on the challenge of digging through a 20-volume set of books detailing the spectra of possible resin materials. Nordin said Bryce found the perfect material thanks to his weeks-long effort in the BYU library. Hua then used this material to make a successful 3D printer resin.

Media Contact

Todd Hollingshead
toddh@byu.edu
801-422-8373

 @byu

http://www.byu.edu

Todd Hollingshead | EurekAlert!

Further reports about: 3D 3D printer Biomarkers microfluidic microfluidic device micrometers

More articles from Information Technology:

nachricht NIST-led team develops tiny low-energy device to rapidly reroute light in computer chips
15.11.2019 | National Institute of Standards and Technology (NIST)

nachricht Fraunhofer Radio Technology becomes part of the worldwide Telecom Infra Project (TIP)
14.11.2019 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Atoms don't like jumping rope

Nanooptical traps are a promising building block for quantum technologies. Austrian and German scientists have now removed an important obstacle to their practical use. They were able to show that a special form of mechanical vibration heats trapped particles in a very short time and knocks them out of the trap.

By controlling individual atoms, quantum properties can be investigated and made usable for technological applications. For about ten years, physicists have...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

High entropy alloys for hot turbines and tireless metal-forming presses

05.11.2019 | Event News

 
Latest News

The neocortex is critical for learning and memory

20.11.2019 | Life Sciences

4D imaging with liquid crystal microlenses

20.11.2019 | Physics and Astronomy

Walking Changes Vision

20.11.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>