Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research at Rice University leads to nanotube-based device for communication, security, sensing

31.01.2012
Terahertz polarizer nears perfection

Researchers at Rice University are using carbon nanotubes as the critical component of a robust terahertz polarizer that could accelerate the development of new security and communication devices, sensors and non-invasive medical imaging systems as well as fundamental studies of low-dimensional condensed matter systems.

The polarizer developed by the Rice lab of Junichiro Kono, a professor of electrical and computer engineering and of physics and astronomy, is the most effective ever reported; it selectively allows 100 percent of a terahertz wave to pass or blocks 99.9 percent of it, depending on its polarization. The research was published in the online version of the American Chemical Society journal, Nano Letters.

The broadband polarizer handles waves from 0.5 to 2.2 terahertz, far surpassing the range of commercial polarizers that consist of fragile grids wrapped in gold or tungsten wires.

Kono said technologies that make use of the optical and electrical regions of the electromagnetic spectrum are mature and common, as in lasers and telescopes on one end and computers and microwaves on the other. But until recent years, the terahertz region in between was largely unexplored. "Over the past decade or two, people have been making impressive progress," he said, particularly in the development of such sources of radiation as the terahertz quantum cascade laser.

"We have pretty good terahertz emitters and detectors, but we need a way to manipulate light in this range," Kono said. "Our work is in this category, manipulating the polarization state -- the direction of the electric field -- of terahertz radiation."

Terahertz waves exist at the transition between infrared and microwaves and have unique qualities. They are not harmful and penetrate fabric, wood, plastic and even clouds, but not metal or water. In combination with spectroscopy, they can be used to read what Kono called "spectral fingerprints in the terahertz range"; he said they would, for instance, be useful in a security setting to identify the chemical signatures of specific explosives.

The work by Kono and lead author Lei Ren, who recently earned his doctorate at Rice, makes great use of the basic research into carbon nanotubes for which the university is famous. Co-authors Robert Hauge, a distinguished faculty fellow in chemistry, and his former graduate student Cary Pint developed a way to grow nanotube carpets and to transfer well-aligned arrays of nanotubes from a catalyst to any substrate they chose, limited only by the size of the growth platform.

While Hauge and Pint were developing their nanotube arrays, Kono and his team were thinking about terahertz. Four years ago, they came across a semiconducting material, indium antimonide, that would stop or pass terahertz waves, but only in a strong magnetic field and at very low temperatures.

At about the same time, Kono's lab began working with carbon nanotube arrays transferred onto a sapphire substrate by Pint and Hauge. Those aligned arrays -- think of a field of wheat run over by a steamroller -- turned out to be very effective at filtering terahertz waves, as Kono and his team reported in a 2009 paper.

"When the polarization of the terahertz wave was perpendicular to the nanotubes, there was absolutely no attenuation," Kono recalled. "But when the polarization was parallel to the nanotubes, the thickness was not enough to completely kill the transmission, which was still at 30-50 percent."

The answer was clear: Make the polarizer thicker. The current polarizer has three decks of aligned nanotubes on sapphire, enough to effectively absorb all of the incident terahertz radiation. "Our method is unique, and it's simple," he said.

Kono sees use for the device beyond spectroscopy by manipulating it with an electric field, but that will only become possible when all of the nanotubes in an array are of a semiconducting type. As they're made now, batches of nanotubes are a random mix of semiconductors and metallics; recent work by Erik Hároz, a graduate student in Kono's lab, detailed the reasons that nanotubes separated through ultracentrifugation have type-dependent colors. But finding a way to grow specific types of nanotubes is the focus of a great deal of research at Rice and elsewhere.

Co-authors are former Rice postdoctoral researcher Takashi Arikawa and research associate Iwao Kawayama and Professor Masayoshi Tonouchi of the Institute of Laser Engineering at Osaka University, Japan.

The Department of Energy, the National Science Foundation and the Robert A. Welch Foundation supported the research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/nl203783q

Related links:
"Nanotubes Take Flight": http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=12868
"Gecko's lessons transfer well": http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=13617
"A see-through surprise": http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=13458&SnID=840080198
"Carbon Nanotube Terahertz Polarizer": http://pubs.acs.org/doi/abs/10.1021/nl900815s
"Nano parfait a treat for scientists": http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=14248

"Scientists solve mystery of colorful armchair nanotubes": http://stage.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=16606&SnID=1904501430

Image for download:

media.rice.edu/images/media/NewsRels/0127_FigureLeiRen.jpg

CAPTION: A triple layer of carbon nanotube arrays on a sapphire base are the basis for a new type of terahertz polarizer invented at Rice University. The polarizer could lead to new security and communication devices, sensors and non-invasive medical imaging systems. (Credit: Lei Ren/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

Chaperones keep the tumor suppressor protein p53 in check: How molecular escorts help prevent cancer

21.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>