Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Helps Exploit Data from New Radar

11.05.2011
Computer models used to forecast storms don't (yet) know how to take advantage of the additional capabilities that will soon be available from advanced dual-polarimetric radar units being installed around the country by the National Weather Service.

Scientists in the Earth System Science Center at The University of Alabama in Huntsville will spend the next three years studying how forecast models can best use the enhanced information from the new radar system to improve storm forecasts.

Dr. Xuanli Li and Dr. John Mecikalski at UAHuntsville, and Dr. Derek Posselt at the University of Michigan, supported by a $445,000 grant from the National Science Foundation, will develop tools to help translate and input what the advanced radar units see into forecast models.

The weather service's NEXRAD Doppler radar units, which have been in service since the early 1990s, send out their radar signals in a single horizontal polarization. The advanced dual-polarimetric (dual-pol) radar being installed around the country through 2013 sends out both horizontal and vertical radar signals.

NEXRAD's single signal provides useful information about two variables, which can tell forecasters and forecast models such things as the amount of water in a cloud or storm system, and the direction in which it is moving.

By looking at the raw signal, plus differences between the vertical and horizontal radar signals, the dual-pol radar gathers information about six variables. These can provide information about the amount of water and movement of the storm, plus other factors such as the type, shape and size of water or ice particles at various places within a cloud.

"In a storm you might have clouds with many small droplets or clouds with a smaller number of large drops, but both might produce similar amounts of rain,” said Mecikalski, an associate professor of atmospheric science. "With the old NEXRAD systems those might show up with very different echoes, which would suggest different rainfall rates. With the new radar you can get more information about the type and shape of the droplets, so you can get a much improved estimate of precipitation."

The challenge, said Li, a post-doctoral research associate, is that existing forecast models don't know what to do with the extra data.

"There hasn't been much research on how to input those data into weather forecast models in real time," she said.

"We will be taking the returns from the radar and assigning those signals to variables the models can understand, such as the amount of snow per cubic meter."

"It is difficult for current forecast models to accurately predict the dynamics and physics of a storm," said Mecikalski. "We want to use data from the new radar and other instruments to help the models do a better job of describing the storm's structure and development. With the new radar's capability we will be able to get more accurate information about a storm, especially about ice particles in clouds, then use that data to make more accurate short-term forecasts."

The team will focus on convective storms, which are often difficult to forecast. They hope the dual-pol radar data will help forecast models provide several improved weather products, including more accurate detection of hail and better rainfall estimates.

UAHuntsville scientists have been working with dual-pol data for several years: The university has been operating a dual-pol radar in cooperation with a local television station for almost seven years.

For additional information:
Dr. Xuanli Li, 256.961.7596
xuanli@nsstc.uah.edu
Dr. John Mecikalski, 256.961.7046

| Newswise Science News
Further information:
http://www.nsstc.uah.edu

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>