Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reproducing the computational environments of experiments

05.09.2017

Experiments increasingly rely on high-performance computing software that plays a crucial role in producing and interpreting data. Differences in software environments can cause problems when those experiments need to be reproduced – so scientists at the MDC in Berlin are helping find a solution.

Reproducing experiments and results is a cornerstone of science, but researchers acknowledge that actually achieving this feat can be tricky. Specific experimental setups are usually the result of a lab's painstaking work and, in today's environment of high-throughput methods, are increasingly expensive.


Inside the MDC's data centre, with racks of high performance computers

Image: MDC

The fact that complex, customized sets of software are frequently involved in the analysis and interpretation of data makes it even more difficult to achieve true reproducibility.

Guix – a free software that is used to fully reproduce computational environments – might be part of the solution, says Ludovic Courtès of Inria, the French National Institute for computer science and applied mathematics in Bordeaux. To implement it he has joined forces with Ricardo Wurmus of the platform for bioinformatics and modeling at the the Max Delbrück Center's Berlin Institute of Medical Systems Biology (BIMSB), scientists from the Utrecht University Medical Center and a growing group of international colleagues.

Capturing complete computational environments

The National Science Foundation in the US and journals such as Nature are insisting that researchers share source code and support reproducibility. "The ability to reproduce an experiment depends – among other things – on the ability to reproduce the software environment," Courtès says. "That poses particular difficulties in the many cases which require high-performance computing (HPC) environments.”

Guix is an outgrowth of a project called GNU launched almost 40 years ago at MIT in the USA. It makes up for some deficits of earlier efforts and is addressing several challenges: Users are no longer dependent on software package management by system administrators, empowering them to fully customize the environment to their needs.

It also solves problems that arise when scientists draw on "container solutions," which Courtès compares to receiving a brand-new computer where everything has already been installed. "That works until you make a small modification in the experiment to test a new hypothesis – which often happens in the world of research!"

The advantage of Guix is how it characterizes software environments in unambiguous terms, similar to a mathematical function. It completely describes all its relations and thus can reproduce them bit-for-bit. This way, Guix facilitates both reproducibility and customizability.

Adapting Guix to scientists' needs

Guix was not originally designed for the high-performance computing environments required by today's experiments. So scientists at the MDC, Inria and the partner institutes are building functions that permit Guix to be used on a computing cluster, to implement reproducible workflows. They are also adding packages that were developed at each site.

"Before Guix, the installation of scientific software was necessarily ad-hoc," Wurmus says. "Groups would build their own software, statically link it into existing systems, and hope that it would never have to change – because managing software environments was virtually impossible. Now not only can we manage a single environment per group in a reliable fashion, but we use Guix at all levels: of the group, user, workflow and so on."

The project is scheduled to last two years, at which time its initiators hope to have met the software reproducibility needs of their institutions. "The wider objective," Courtès says, "is to convince others who rely on high-performance computing that Guix represents a major advance toward a fundamental goal in science."

The Max Delbrück Center for Molecular Medicine (MDC)

The Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) was founded in Berlin in 1992. It is named for the German-American physicist Max Delbrück, who was awarded the 1969 Nobel Prize in Physiology and Medicine. The MDC's mission is to study molecular mechanisms in order to understand the origins of disease and thus be able to diagnose, prevent and fight it better and more effectively. In these efforts, the MDC cooperates with the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health (BIH) as well as with national partners such as the German Center for Cardiovascular Research and numerous international research institutions. More than 1,600 staff and guests from nearly 60 countries work at the MDC, just under 1,300 of them in scientific research. The MDC is funded by the German Federal Ministry of Education and Research (90 percent) and the State of Berlin (10 percent), and is a member of the Helmholtz Association of German Research Centers.

Weitere Informationen:

https://guix-hpc.bordeaux.inria.fr/ Website of the Guix project
https://www.inria.fr/en/centre/bordeaux/news/towards-reproducible-software-envir... Detailed information at the Inria website
https://insights.mdc-berlin.de/en/2017/09/reproducing-computational-environments... This release at the MDC website
http://bioinformatics.mdc-berlin.de/team.html Website of the BIMSB Bioinformatics platform

Annette Tuffs | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

More articles from Information Technology:

nachricht Earthquake researchers finalists for supercomputing prize
19.11.2018 | University of Tokyo

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>