Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galileo signal reflections used for monitoring waves and weather at sea

27.11.2007
Surrey Satellite Technology Ltd (SSTL) and the University of Surrey have succeeded for the first time in capturing a Galileo signal reflected off the ocean surface in orbit, demonstrating the potential for determining the weather at sea with remote sensing satellites.

The pioneering GPS Reflectometry Experiment was launched onboard SSTL’s UK-DMC satellite in 2003 to demonstrate the use of GPS reflections to determine the roughness of the ocean, using a method called “bistatic radar” or “forward scatterometry”. This experiment has now successfully detected a Galileo satellite navigation signal reflected by the ocean’s surface. GIOVE-A, the first Galileo demonstration satellite, also built by SSTL, was commissioned by the European Space Agency and has been transmitting prototype Galileo signals since its launch in December 2005.

Dr Martin Unwin, head of the Global Navigation Satellite Systems (GNSS) / GPS team at SSTL explained: “This is an important achievement in remote sensing and demonstrates the potential offered by Galileo for scientific purposes. A constellation of small satellites could be deployed at low cost to take measurements over the oceans where there are large gaps in forecast knowledge at present. An improved measurement system in space could be used to warn mariners of storms and to provide data for global climate change models - potentially even to detect Tsunamis.”

In early November, 20 seconds of data were captured in orbit above the Arafura Sea, north of Australia, and downloaded to Surrey for processing. Whilst the orbiting experiment on UK-DMC is not optimised for Galileo signals, enough of the reflected signal energy was received to allow the detection and plotting of the weak signal after processing by University of Surrey PhD student, Philip Jales. The shape of the reflection gives an indication of the sea roughness and hence the weather at that place and time, where the wind speed was around 14 mph (22 km/h).

Dr Unwin continued: “Signals from Galileo, in conjunction with GPS and the Russian and Chinese systems, Glonass and Compass, can all be used as part of a new tool for ocean sensing. The future high bandwidth signals transmitted by Galileo, in particular, will enable higher resolution measurements of special interest to scientists, for example, in resolving wave heights”

GPS Reflectometry is of great interest to engineers and scientists as a cost effective means of remote sensing. Firstly, a special transmitter is not required because GPS signals are already broadcast to the Earth 24 hours a day. Also, a satellite dedicated to GPS reflectometry would only need to carry a modified miniaturised GPS/Galileo receiver and an antenna, which could potentially be accommodated on a tiny 10 kg satellite platform at low cost, enabling multiple satellites on a single launch.

The UK-DMC Reflectometry Experiment has also previously been used to detect GPS signals reflected off ice and, surprisingly, dry land. The value of these measurements has yet to be fully explored but they may be used as inputs for climate modelling.

A future revision of the experiment, the “GNSS Reflectometry Instrument” is now being designed at Surrey with a view to flight on a future satellite mission. It is being designed specifically to receive Galileo signals as well as those from GPS, with the intention of real time processing. “The sooner Galileo is up and transmitting the better” said Dr Unwin.

Robin Wolstenholme | alfa
Further information:
http://www.sstl.co.uk

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Discovering unusual structures from exception using big data and machine learning techniques

17.05.2019 | Materials Sciences

ALMA discovers aluminum around young star

17.05.2019 | Physics and Astronomy

A new iron-based superconductor stabilized by inter-block charger transfer

17.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>